Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型

2024-05-30 05:58

本文主要是介绍Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensorflow-lite官方给的应用是一个摄像头demo,主要由ImageClassifier类和Camera2BasicFragment类构成,ImageClassifier类为一个抽象类,由浮点类和数字量化类两类继承,主要实现读取,模型和预测的功能。Camera2BasicFragment类为碎片类,主要实现摄像头的预览功能。基于项目需要,为了能够在移动端测试model的性能,在原demo的基础上开发了一个测试demo,从移动端本地读取测试集进行预测,将预测结果以txt保存在本地,同时计算每类的精确率和召回率在终端显示,先给出demo效果图。
这里写图片描述
这里写图片描述
第一个图展示的是float模型跑出来的结果,第二个图展示的是量化模型的结果Quant量化模型跑出来的结果精度下降很多。
demo的github代码如下:https://github.com/GeekLee95/TFlite_android_test/tree/master
代码主要由以下四个类构成
这里写图片描述
ImageClassifer类 为抽象类
ImageClassifierFloatInception为浮点型子类,对应的浮点模型为assets资源下的7_float.tflite
ImageClaaifierQuantizedMobileNet为量化型子类,对应的数字量化模型为assets资源下的7.tflite
Mainactivity为主活动,主要涉及读取文件,图片格式转化和模型预测等方法。
output_labels.txt为模型的标签文件。

下面介绍主活动的主要方法。

1). public static void verifyStoragePermissions(Activity activity)
该函数实现动态申请权限,android 6.0以后为了提高系统安全,必须要在程序中动态申请权限
首先在清单文件中配置需要申请的权限,

<manifest xmlns:android="http://schemas.android.com/apk/res/android"package="com.example.liuli.openfiles"><uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEM"/><uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

然后再动态申请

public static void verifyStoragePermissions(Activity activity){try{int permission= ActivityCompat.checkSelfPermission(activity,"android.permission.WRITE_EXTERNAL_STORAGE");if(permission!= PackageManager.PERMISSION_DENIED){ActivityCompat.requestPermissions(activity,PERMISSIONS_STORGE,REQUEST_EXTERNAL_STORAGE);}} catch (Exception e){e.printStackTrace();}}

2). private List getImagePath()从本地存储中获取测试图片路径,可以选择内部存储(外置SD卡)和扩展存储卡(TF卡)路径。

private List<String> getImagePath(){List<String> dirpath = getExtSDCardPathList();Log.d("sd_path",dirpath.get(0));Log.d("tf_path",dirpath.get(1));tfpath = dirpath.get(1);List<String> imagePathList = new ArrayList<String>();String filepath = tfpath+ File.separator+"DCIM"+File.separator+"TEST";//String filepath = Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES).toString();//Context context = getApplicationContext(); //获取当前上下文//String filepath = context.getExternalFilesDir("DCIM")+File.separator;//得到该路径文件夹下的所有文件Log.d("filepath",filepath);File fileAll = new File(filepath);boolean result = fileAll.exists();File[] files = fileAll.listFiles();for(int i = 0;i<files.length;i++){File file = files[i];if(checkIsImageFile(file.getPath())){imagePathList.add(file.getPath());}}return imagePathList;}

3). private Bitmap createImageThumbnail(String filePath,int newHeight,int newWidth) 将原始图片缩放成指定大小的bitmap格式,比如mobilenet模型的input_size: 224x224

private Bitmap createImageThumbnail(String filePath,int newHeight,int newWidth){Bitmap bm = BitmapFactory.decodeFile(filePath);float width = bm.getWidth();float height = bm.getHeight();Log.i("old_size:","宽度是"+width+",高度是"+height);Matrix matrix = new Matrix();//计算宽高缩放率float scaleWidth = ((float) newWidth)/width;float scaleHeight = ((float) newHeight)/height;//缩放图片动作matrix.postScale(scaleWidth,scaleHeight);Bitmap bitmap = Bitmap.createBitmap(bm,0,0,(int)width,(int)height,matrix,true);Log.i("new_size:","宽度是"+bitmap.getHeight()+",高度是"+bitmap.getWidth());return bitmap;}

4). private void classifyFrame(List Frames) 进行模型预测

    private void classifyFrame(List<String> Frames){int num = 0;int carlessnum = 0,carlessTP = 0,carlessFP = 0;int carnormalnum = 0,carnormalTP = 0,carnormalFP = 0;int carmorenum = 0,carmoreTP = 0,carmoreFP = 0;//显示待预测图片总数mShownum.setText(Integer.toString(Frames.size()));Log.d("mShownum",Integer.toString(Frames.size()));String resultfilepath = tfpath+ File.separator+"DCIM"+File.separator+"TESTRESULT"+File.separator;for(int i = 0;i<Frames.size();i++){String imagepath = Frames.get(i);Bitmap bitmap = createImageThumbnail(imagepath,classifier.getImageSizeX(),classifier.getImageSizeY());String result = classifier.classifyFrame(bitmap);Log.d("Predict_result"+Integer.toString(i),result);String imagename = imagepath.split("/")[imagepath.split("/").length-1];//将数据保存到本地String resultname = imagename.replace(".jpg",".txt");Log.d("resultname",resultname);writeTxtToFile(result,resultfilepath,resultname);String label = imagename.split("_")[0];Log.d("label"+Integer.toString(i),label);switch (label){case "0":carlessnum++;Log.d("carlessnum",Integer.toString(carlessnum));if(result == classifier.labelList.get(Integer.parseInt(label))){carlessTP++;Log.d("carlessTP",Integer.toString(carlessTP));}break;case "1":carnormalnum++;Log.d("carnormalnum",Integer.toString(carnormalnum));if(result == classifier.labelList.get(Integer.parseInt(label))){carnormalTP++;Log.d("carnormalTP",Integer.toString(carnormalTP));}break;case "2":carmorenum++;Log.d("carmorenum",Integer.toString(carmorenum));if(result == classifier.labelList.get(Integer.parseInt(label))){carmoreTP++;Log.d("carmoreTP",Integer.toString(carmoreTP));}break;}if(result != classifier.labelList.get(Integer.parseInt(label))){switch (result){case "类别1":carlessFP++;break;case "类别2":carnormalFP++;break;case "类别3":carmoreFP++;break;}}if(result == classifier.labelList.get(Integer.parseInt(label))){num++;} else{wrongFrames.add(imagepath+"predict:"+result);}Log.d("图片数:", Integer.toString(i+1));Log.d("正确数:", Integer.toString(num));}float result  = (float)num/(float)Frames.size();mShowResult.setText(Float.toString(result));// 计算每一类的精确率和召回率float carlessrec = (float)Math.round((float)carlessTP/(float)carlessnum*10000)/10000;float carlessacc = (float) Math.round((float)carlessTP/(float)(carlessTP+carlessFP)*10000)/10000;float carnormalrec = (float) Math.round((float)carnormalTP/(float)carnormalnum*10000)/10000;float carnormalacc = (float) Math.round((float)carnormalTP /(float)(carnormalTP+carnormalFP)*10000)/10000;float carmorerec = (float) Math.round((float) carmoreTP/(float)carmorenum*10000)/10000;float carmoreacc = (float) Math.round((float)carmoreTP/(float)(carmoreTP+carmoreFP)*10000)/10000;mShowcarlessacc.setText(Float.toString(carlessacc));mShowcarlessrec.setText(Float.toString(carlessrec));mShowcarlessnum.setText(Integer.toString(carlessnum));mShowcarnormacc.setText(Float.toString(carnormalacc));mShowcarnormrec.setText(Float.toString(carnormalrec));mShowcarnormnum.setText(Integer.toString(carnormalnum));mShowcarmoreacc.setText(Float.toString(carmoreacc));mShowcarmorerec.setText(Float.toString(carmorerec));mShowcarmorenum.setText(Integer.toString(carmorenum));}

后续将会对模型进行改进和完善。

这篇关于Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015752

相关文章

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

使用Python实现在PDF中添加、导入、复制、移动与删除页面

《使用Python实现在PDF中添加、导入、复制、移动与删除页面》在日常办公和自动化任务中,我们经常需要对PDF文件进行页面级的编辑,使用Python,你可以轻松实现这些操作,而无需依赖AdobeAc... 目录1. 向 PDF 添加空白页2. 从另一个 PDF 导入页面3. 删除 PDF 中的页面4. 在

CPython与PyPy解释器架构的性能测试结果对比

《CPython与PyPy解释器架构的性能测试结果对比》Python解释器的选择对应用程序性能有着决定性影响,CPython以其稳定性和丰富的生态系统著称;而PyPy作为基于JIT(即时编译)技术的替... 目录引言python解释器架构概述CPython架构解析PyPy架构解析架构对比可视化性能基准测试测

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4