pandas库中数据结构DataFrame的绘制函数

2024-05-30 03:48

本文主要是介绍pandas库中数据结构DataFrame的绘制函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用Canopy进行数据分析时,我们会用到pandas库,通过它我们可以灵活的对数据进行处理、转换和绘图等操作。其中非常重要的数据结构就是DataFrame。
本文主要整理一下对DataFrame对象进行plot操作的使用说明。

函数名称:
pandas.DataFrame.plot

函数参数列表及缺省值:
DataFrame.plot(data, x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=True, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)

Make plots of DataFrame using matplotlib / pylab.

相关参数说明:

Parameters :

data : DataFrame

# 需要绘制的数据对象

x : label or position, default None

# x轴的标签值,缺省值是 None   

y : label or position, default None

Allows plotting of one column versus another

# y轴的标签值,缺省值是 None

kind : str

‘line’ : line plot (default)

‘bar’ : vertical bar plot

‘barh’ : horizontal bar plot

‘hist’ : histogram

‘box’ : boxplot

‘kde’ : Kernel Density Estimation plot

‘density’ : same as ‘kde’

‘area’ : area plot

‘pie’ : pie plot

‘scatter’ : scatter plot

‘hexbin’ : hexbin plot

# 标识绘制方式的字符串,缺省值是 ‘line’ 

ax : matplotlib axes object, default None

# 当使用到subplots绘图时,会得到包含子图对象的参数,

    再完善子图内容时需要指定该参数,缺省值是 None [可参照后面示例1]

subplots : boolean, default False

Make separate subplots for each column

# 所绘制对象数据 data 是否需要分成不同的子图, 缺省值是 False  [可参照后面示例2]

sharex : boolean, default True

In case subplots=True, share x axis

# 当参数subplots 为 True时,该值表示各子图是否共享x轴标签值,缺省值是 True

sharey : boolean, default False

In case subplots=True, share y axis

# 当参数subplots 为 True时,该值表示各子图是否共享x轴标签值,缺省值为 True

layout : tuple (optional)

(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches

use_index : boolean, default True

Use index as ticks for x axis

title : string

# 图的标题

Title to use for the plot

grid : boolean, default None (matlab style default)

Axis grid lines

# 是否需要显示网格,缺省值是 None[需要留意的是,在Canopy中默认是显示网格的]

legend : False/True/’reverse’

Place legend on axis subplots

# 添加子图的图例,缺省值是True

style : list or dict

matplotlib line style per column

# 设置绘制线条格式,仅当参数kind 设置为 ‘line’ [可参照后面示例3]

logx : boolean, default False

Use log scaling on x axis

# 将x轴设置成对数坐标,缺省值是False

logy : boolean, default False

Use log scaling on y axis

# 将y轴设置成对数坐标,缺省值是False

loglog : boolean, default False

Use log scaling on both x and y axes

# 将x轴、y轴都设置成对数坐标,缺省值是False

xticks : sequence

Values to use for the xticks

# 指定 x轴标签的取值范围(或步长)

yticks : sequence

Values to use for the yticks

# 指定 y轴标签的取值范围(或步长)

xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None

Rotation for ticks (xticks for vertical,

yticks for horizontal plots)

fontsize : int, default None

Font size for xticks and yticks

# 字体大小,缺省值是 None

colormap : str or matplotlib colormap object,

default None

Colormap to select colors from. If string,

load colormap with that name from matplotlib.

# 指定具体颜色取值或对应对象名称,缺省值是 None

colorbar : boolean, optional

If True, plot colorbar (only relevant for

‘scatter’ and ‘hexbin’ plots)

# 是否显示颜色条,如果设为 True,则仅当参数kind 设置为 ‘scatter’、 ‘hexbin’时有效

position : float

Specify relative alignments for bar plot layout.

From 0 (left/bottom-end) to 1 (right/top-end).

Default is 0.5 (center)

layout : tuple (optional)

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the

DataFrame and the data will be transposed to meet

matplotlib’s default layout. If a Series or

DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot.

If True, create stacked plot.

# 参数kind 设置为 ‘line’、’bar’时,该值默认为False,

# 参数 kind 设置为’area’时,该值默认为True

# 当该参数设置为True时,生成对应的堆积图

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple,

which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the

column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns :      axes : matplotlib.AxesSubplot or np.array of them

示例:

示例1:

参照《Python 数据分析(三)[MAC]》中第7个分析任务—男孩女孩名字中各个末字母的比例

1 <pre>### 7. count the sum of each last letter of names of diferent 'sex' in each year
2 get_last_letter = lambda x: x[-1]
3 last_letters = names.name.map(get_last_letter)
4 last_letters.name = 'last_letter'
5 table = names.pivot_table('births', rows=last_letters, cols=['sex''year'], aggfunc=sum)
6 subtable = table.reindex(columns=[191019602010], level='year')
7 letter_prop = subtable / subtable.sum().astype(float)
8 import matplotlib.pyplot as plt
9 fig, axes = plt.subplots(21, figsize=(108))
10 letter_prop['M'].plot(kind='bar', rot=0, ax=axes[0], title='Male')
11 letter_prop['F'].plot(kind='bar', rot=0, ax=axes[1], title='Female', legend=False)

说明:
先调用plt(matplotlib.pyplot)绘制两个空白子图,再通过对应数据对象(letter_prop[‘M’]、letter_prop[‘F’])依次绘制不同的子图,这时调用plot函数时就需要设置ax参数,让其指定到待显示的子图对象。对应绘制结果如下。

 

示例2:

参照《Python 数据分析(三)[MAC]》中第4个分析任务—获取’John’、’Harry’、’Mary’、’Marilyn’随时间变化的使用数量

1 ### 4. get the sum of names['John', 'Harry', 'Mary', 'Marilyn'] of diferent 'sex' in each year
2 subset = total_births[['John''Harry''Mary''Marilyn']]
3 subset.plot(subplots=True, figsize=(1210), grid=False, title="Number of births per year", xticks=range(1880202010))

说明:
先获取含有不同子图所涉及的数据对象subset,再在调用plot时,设置参数 subplots = True。对应绘制结果如下。

示例3:

参照《Python 数据分析(三)[MAC]》中第4个分析任务—各年度使用包含’lesl’名字的男女比例

1 ### 9. count the ratio of names[contain 'lesl'] of diferent 'sex' in each year
2 all_names = top1000.name.unique()
3 mask = np.array(['lesl' in x.lower() for in all_names])
4 lesley_like = all_names[mask]
5 filtered = top1000[top1000.name.isin(lesley_like)]
6 filtered.groupby('name').births.sum()
7 table = filtered.pivot_table('births', rows='year', cols='sex', aggfunc='sum')
8 table = table.div(table.sum(1), axis=0)
9 table.plot(style={'M':'k-','F''k--'}, xticks=range(1880202010))

说明:
对同一个图形中的两条直线使用不同的图形,style={‘M':’k-‘,’F': ‘k–‘}。对应绘制结果如下。

>>  本文链接:  https://www.jelekinn.com/pandas-dataframe-plot.html
>>  转载请注明来源:  Jele Kinn’s Blog >>  《pandas库中数据结构DataFrame的绘制函数》

这篇关于pandas库中数据结构DataFrame的绘制函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015496

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python中DataFrame转列表的最全指南

《Python中DataFrame转列表的最全指南》在Python数据分析中,Pandas的DataFrame是最常用的数据结构之一,本文将为你详解5种主流DataFrame转换为列表的方法,大家可以... 目录引言一、基础转换方法解析1. tolist()直接转换法2. values.tolist()矩阵

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st