NumPy 泊松分布模拟与 Seaborn 可视化技巧

2024-05-29 21:36

本文主要是介绍NumPy 泊松分布模拟与 Seaborn 可视化技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松分布

简介

泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。

参数

泊松分布用一个参数来定义:

λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。

公式

泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:

P(k) = e^(-λ) (λ^k) / k!

其中:

e^(-λ):表示没有事件发生的概率。
(λ^k):表示 k 次事件发生的概率。
k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × … × 2 × 1。

生成泊松分布数据

NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:

lam:事件发生的平均速率。
size:输出数组的形状。

示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:

import numpy as npdata = np.random.poisson(lam=5, size=10)
print(data)

可视化泊松分布

Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。

示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:

import seaborn as sns
import numpy as npdata = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()

正态分布与泊松分布的关系

当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。

示例:比较泊松分布和正态分布的形状:

import seaborn as sns
import numpy as nplam = 50# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()

练习

  1. 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
  2. 比较不同平均速率下泊松分布形状的变化。
  3. 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:data = np.random.poisson(lam=lam, size=1000)sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

这篇关于NumPy 泊松分布模拟与 Seaborn 可视化技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014707

相关文章

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

电脑报错cxcore100.dll丢失怎么办? 多种免费修复缺失的cxcore100.dll文件的技巧

《电脑报错cxcore100.dll丢失怎么办?多种免费修复缺失的cxcore100.dll文件的技巧》你是否也遇到过“由于找不到cxcore100.dll,无法继续执行代码,重新安装程序可能会解... 当电脑报错“cxcore100.dll未找到”时,这通常意味着系统无法找到或加载这编程个必要的动态链接库

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

CSS模拟 html 的 title 属性(鼠标悬浮显示提示文字效果)

《CSS模拟html的title属性(鼠标悬浮显示提示文字效果)》:本文主要介绍了如何使用CSS模拟HTML的title属性,通过鼠标悬浮显示提示文字效果,通过设置`.tipBox`和`.tipBox.tipContent`的样式,实现了提示内容的隐藏和显示,详细内容请阅读本文,希望能对你有所帮助... 效

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Apache伪静态(Rewrite).htaccess文件详解与配置技巧

《Apache伪静态(Rewrite).htaccess文件详解与配置技巧》Apache伪静态(Rewrite).htaccess是一个纯文本文件,它里面存放着Apache服务器配置相关的指令,主要的... 一、.htAccess的基本作用.htaccess是一个纯文本文件,它里面存放着Apache服务器