非线性优化:高斯-牛顿法的原理与实现

2024-05-29 15:28

本文主要是介绍非线性优化:高斯-牛顿法的原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非线性优化:高斯-牛顿法的原理与实现

引言

在实际应用中,很多问题都是非线性的。非线性优化问题广泛应用于机器学习、数据拟合、工程设计等领域。高斯-牛顿法是一种常用于解决非线性最小二乘问题的迭代算法。本文将详细介绍高斯-牛顿法的原理、推导过程,并通过Python代码实现该算法。

高斯-牛顿法原理

问题定义

非线性最小二乘问题可以表示为:
min ⁡ x ∑ i = 1 m [ r i ( x ) ] 2 \min_{\mathbf{x}} \sum_{i=1}^m [r_i(\mathbf{x})]^2 xmini=1m[ri(x)]2
其中, x \mathbf{x} x 是需要优化的参数向量, r i ( x ) r_i(\mathbf{x}) ri(x)是残差函数。

高斯-牛顿法

高斯-牛顿法的基本思想是利用泰勒展开对非线性函数进行线性近似,然后求解线性最小二乘问题。具体步骤如下:

  1. 初始猜测参数 x 0 \mathbf{x}_0 x0
  2. 迭代更新参数 x \mathbf{x} x
    x k + 1 = x k − ( J T J ) − 1 J T r ( x k ) \mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}(\mathbf{x}_k) xk+1=xk(JTJ)1JTr(xk)
    其中, J \mathbf{J} J 是残差函数 r ( x ) \mathbf{r}(\mathbf{x}) r(x)对参数 x \mathbf{x} x 的雅可比矩阵。

雅可比矩阵

雅可比矩阵 J \mathbf{J} J 的每个元素定义为:
J i j = ∂ r i ( x ) ∂ x j J_{ij} = \frac{\partial r_i(\mathbf{x})}{\partial x_j} Jij=xjri(x)

Python实现

下面的代码展示了如何使用高斯-牛顿法解决非线性最小二乘问题。

示例问题

我们以一个简单的非线性函数为例:
y = a exp ⁡ ( b x ) + c y = a \exp(b x) + c y=aexp(bx)+c
给定一组数据点 ( x i , y i ) (x_i, y_i) (xi,yi),拟合参数 a , b , c a, b, c a,b,c

代码实现

import numpy as np
import matplotlib.pyplot as pltdef residuals(params, x, y):a, b, c = paramsreturn y - (a * np.exp(b * x) + c)def jacobian(params, x):a, b, c = paramsJ = np.zeros((len(x), len(params)))J[:, 0] = -np.exp(b * x)J[:, 1] = -a * x * np.exp(b * x)J[:, 2] = -1return Jdef gauss_newton(x, y, initial_params, max_iter=100, tol=1e-6):params = np.array(initial_params)for i in range(max_iter):r = residuals(params, x, y)J = jacobian(params, x)delta = np.linalg.inv(J.T @ J) @ J.T @ rparams = params - deltaif np.linalg.norm(delta) < tol:breakreturn params# 生成示例数据
np.random.seed(0)
x = np.linspace(0, 1, 100)
a_true, b_true, c_true = 2, -1, 0.5
y_true = a_true * np.exp(b_true * x) + c_true
y_noisy = y_true + 0.1 * np.random.normal(size=x.size)# 高斯-牛顿法拟合
initial_params = [1, -0.5, 0]
params_estimated = gauss_newton(x, y_noisy, initial_params)# 输出结果
print("Estimated parameters:", params_estimated)
print("True parameters:", [a_true, b_true, c_true])# 可视化拟合结果
y_fitted = params_estimated[0] * np.exp(params_estimated[1] * x) + params_estimated[2]
plt.scatter(x, y_noisy, label='Noisy data')
plt.plot(x, y_true, label='True function', linestyle='--')
plt.plot(x, y_fitted, label='Fitted function', color='red')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gauss-Newton Method for Nonlinear Least Squares')
plt.show()

代码说明

  1. residuals:计算残差函数 ( r(\mathbf{x}) )。
  2. jacobian:计算雅可比矩阵 ( \mathbf{J} )。
  3. gauss_newton:实现高斯-牛顿法的主函数。该函数迭代更新参数,直到收敛或达到最大迭代次数。
  4. 示例数据生成与拟合:生成示例数据并使用高斯-牛顿法进行拟合,最后可视化结果。

结果展示

运行上述代码,可以得到拟合的参数估计值及其与真实值的比较,并通过图形展示拟合效果。

Estimated parameters: [ 2.00731989 -0.99971756  0.50021009]
True parameters: [2, -1, 0.5]

在这里插入图片描述

从结果可以看出,高斯-牛顿法能够较准确地估计非线性函数的参数。通过可视化图形,可以直观地看到拟合曲线与真实曲线之间的差异。

结论

高斯-牛顿法是一种强大且常用的非线性最小二乘优化方法。在处理非线性问题时,通过迭代更新参数,高斯-牛顿法可以有效地逼近全局最优解。本文介绍了高斯-牛顿法的原理、推导过程,并通过Python代码展示了如何应用该算法解决实际问题。

希望本文能够帮助您理解和应用高斯-牛顿法。如果您有任何问题或建议,欢迎在评论区留言讨论。

这篇关于非线性优化:高斯-牛顿法的原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013911

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、