非线性优化:高斯-牛顿法的原理与实现

2024-05-29 15:28

本文主要是介绍非线性优化:高斯-牛顿法的原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非线性优化:高斯-牛顿法的原理与实现

引言

在实际应用中,很多问题都是非线性的。非线性优化问题广泛应用于机器学习、数据拟合、工程设计等领域。高斯-牛顿法是一种常用于解决非线性最小二乘问题的迭代算法。本文将详细介绍高斯-牛顿法的原理、推导过程,并通过Python代码实现该算法。

高斯-牛顿法原理

问题定义

非线性最小二乘问题可以表示为:
min ⁡ x ∑ i = 1 m [ r i ( x ) ] 2 \min_{\mathbf{x}} \sum_{i=1}^m [r_i(\mathbf{x})]^2 xmini=1m[ri(x)]2
其中, x \mathbf{x} x 是需要优化的参数向量, r i ( x ) r_i(\mathbf{x}) ri(x)是残差函数。

高斯-牛顿法

高斯-牛顿法的基本思想是利用泰勒展开对非线性函数进行线性近似,然后求解线性最小二乘问题。具体步骤如下:

  1. 初始猜测参数 x 0 \mathbf{x}_0 x0
  2. 迭代更新参数 x \mathbf{x} x
    x k + 1 = x k − ( J T J ) − 1 J T r ( x k ) \mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}(\mathbf{x}_k) xk+1=xk(JTJ)1JTr(xk)
    其中, J \mathbf{J} J 是残差函数 r ( x ) \mathbf{r}(\mathbf{x}) r(x)对参数 x \mathbf{x} x 的雅可比矩阵。

雅可比矩阵

雅可比矩阵 J \mathbf{J} J 的每个元素定义为:
J i j = ∂ r i ( x ) ∂ x j J_{ij} = \frac{\partial r_i(\mathbf{x})}{\partial x_j} Jij=xjri(x)

Python实现

下面的代码展示了如何使用高斯-牛顿法解决非线性最小二乘问题。

示例问题

我们以一个简单的非线性函数为例:
y = a exp ⁡ ( b x ) + c y = a \exp(b x) + c y=aexp(bx)+c
给定一组数据点 ( x i , y i ) (x_i, y_i) (xi,yi),拟合参数 a , b , c a, b, c a,b,c

代码实现

import numpy as np
import matplotlib.pyplot as pltdef residuals(params, x, y):a, b, c = paramsreturn y - (a * np.exp(b * x) + c)def jacobian(params, x):a, b, c = paramsJ = np.zeros((len(x), len(params)))J[:, 0] = -np.exp(b * x)J[:, 1] = -a * x * np.exp(b * x)J[:, 2] = -1return Jdef gauss_newton(x, y, initial_params, max_iter=100, tol=1e-6):params = np.array(initial_params)for i in range(max_iter):r = residuals(params, x, y)J = jacobian(params, x)delta = np.linalg.inv(J.T @ J) @ J.T @ rparams = params - deltaif np.linalg.norm(delta) < tol:breakreturn params# 生成示例数据
np.random.seed(0)
x = np.linspace(0, 1, 100)
a_true, b_true, c_true = 2, -1, 0.5
y_true = a_true * np.exp(b_true * x) + c_true
y_noisy = y_true + 0.1 * np.random.normal(size=x.size)# 高斯-牛顿法拟合
initial_params = [1, -0.5, 0]
params_estimated = gauss_newton(x, y_noisy, initial_params)# 输出结果
print("Estimated parameters:", params_estimated)
print("True parameters:", [a_true, b_true, c_true])# 可视化拟合结果
y_fitted = params_estimated[0] * np.exp(params_estimated[1] * x) + params_estimated[2]
plt.scatter(x, y_noisy, label='Noisy data')
plt.plot(x, y_true, label='True function', linestyle='--')
plt.plot(x, y_fitted, label='Fitted function', color='red')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gauss-Newton Method for Nonlinear Least Squares')
plt.show()

代码说明

  1. residuals:计算残差函数 ( r(\mathbf{x}) )。
  2. jacobian:计算雅可比矩阵 ( \mathbf{J} )。
  3. gauss_newton:实现高斯-牛顿法的主函数。该函数迭代更新参数,直到收敛或达到最大迭代次数。
  4. 示例数据生成与拟合:生成示例数据并使用高斯-牛顿法进行拟合,最后可视化结果。

结果展示

运行上述代码,可以得到拟合的参数估计值及其与真实值的比较,并通过图形展示拟合效果。

Estimated parameters: [ 2.00731989 -0.99971756  0.50021009]
True parameters: [2, -1, 0.5]

在这里插入图片描述

从结果可以看出,高斯-牛顿法能够较准确地估计非线性函数的参数。通过可视化图形,可以直观地看到拟合曲线与真实曲线之间的差异。

结论

高斯-牛顿法是一种强大且常用的非线性最小二乘优化方法。在处理非线性问题时,通过迭代更新参数,高斯-牛顿法可以有效地逼近全局最优解。本文介绍了高斯-牛顿法的原理、推导过程,并通过Python代码展示了如何应用该算法解决实际问题。

希望本文能够帮助您理解和应用高斯-牛顿法。如果您有任何问题或建议,欢迎在评论区留言讨论。

这篇关于非线性优化:高斯-牛顿法的原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013911

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp