Levenshtein算法

2024-05-29 11:18
文章标签 算法 levenshtein

本文主要是介绍Levenshtein算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Levenshtein算法,用于计算两个字符串之间的Levenshtein距离。而Levenshtein距离又称为编辑距离,是指两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

概述

Levenshtein距离用来描述两个字符串之间的差异。我在一个网络爬虫程序里面使用这个算法来比较两个网页之间的版本,如果网页的内容有足够多的变动,我便将它更新到我的数据库。

说明

原来的算法是创建一个大小为StrLen1*StrLen2的矩阵。如果所有字符串加起来是1000个字符那么长的话,那么这个矩阵就会是1M;如果字符串是10000个字符,那么矩阵就是100M。如果元素都是整数(这里是指数字,Int32)的话,那么矩阵就会是4*100M == 400MB这么大,唉……

现在的算法版本只使用2*StrLen个元素,这使得后面给出的例子成为2*10,000*4 = 80 KB。其结果是,不但内存占用更少,而且速度也变快了!因为这使得内存分配只需要很少的时间来完成。当两个字符串的长度都是1k左右时,新算法的效率是旧算法的两倍!

示例

原来的版本将会创建一个矩阵[6+1, 5+1],而我的新算法将会创建两个向量[6+1](黄色元素)。在这两个算法版本中,字符串的顺序是无关紧要、无所谓的,也就是说,它也可以是矩阵[5+1, 6+1]和两个向量[5+1]。

新的算法

步骤

步骤 说明
1 设置n为字符串s的长度。("GUMBO") 
设置m为字符串t的长度。("GAMBOL") 
如果n等于0,返回m并退出。
如果m等于0,返回n并退出。
构造两个向量v0[m+1] 和v1[m+1],串联0..m之间所有的元素。
2 初始化 v0 to 0..m。
3 检查 s (i from 1 to n) 中的每个字符。
4 检查 t (j from 1 to m) 中的每个字符
5 如果 s[i] 等于 t[j],则编辑代价为 0;
如果 s[i] 不等于 t[j],则编辑代价为1。
6 设置单元v1[j]为下面的最小值之一:
a、紧邻该单元上方+1:v1[j-1] + 1
b、紧邻该单元左侧+1:v0[j] + 1
c、该单元对角线上方和左侧+cost:v0[j-1] + cost
7 在完成迭代 (3, 4, 5, 6) 之后,v1[m]便是编辑距离的值。

本小节将演示如何计算"GUMBO"和"GAMBOL"两个字符串的Levenshtein距离。

步骤1、2

v0 v1





G U M B O

0 1 2 3 4 5
G 1




A 2




M 3




B 4




O 5




L 6




步骤3-6,当 i = 1

 


v0 v1





G U M B O

0 1 2 3 4 5
G 1 0



A 2 1



M 3 2



B 4 3



O 5 4



L 6 5



步骤3-6,当 i = 2


v0 v1




G U M B O

0 1 2 3 4 5
G 1 0 1


A 2 1 1


M 3 2 2


B 4 3 3


O 5 4 4


L 6 5 5


步骤3-6,当 i = 3

 




v0 v1



G U M B O

0 1 2 3 4 5
G 1 0 1 2

A 2 1 1 2

M 3 2 2 1

B 4 3 3 2

O 5 4 4 3

L 6 5 5 4

步骤3-6,当 i = 4

 





v0 v1


G U M B O

0 1 2 3 4 5
G 1 0 1 2 3
A 2 1 1 2 3
M 3 2 2 1 2
B 4 3 3 2 1
O 5 4 4 3 2
L 6 5 5 4 3
步骤3-6,当 i = 5

 






v0 v1


G U M B O

0 1 2 3 4 5
G 1 0 1 2 3 4
A 2 1 1 2 3 4
M 3 2 2 1 2 3
B 4 3 3 2 1 2
O 5 4 4 3 2 1
L 6 5 5 4 3 2
步骤7

编辑距离就是矩阵右下角的值,v1[m] == 2。由"GUMBO"变换为"GAMBOL"的过程对于我来说是很直观的,即通过将"A"替换为"U",并在末尾追加"L"这样子(实际上替换的过程是由移除和插入两个操作组合而成的)。

改良

如果您确信你的字符串永远不会超过2^16(65536)个字符,那么你可以使用ushort来表示而不是int,如果字符串少于2^8个,还可以使用byte。我觉得这个算法用非托管代码实现的话可能会更快,但我没有试过。



//Levenshtein距离,又称编辑距离,用于比较两个字符串的相似程度。
double LevenshteinDistance(const CString &source, const CString &target)
{
int sourceLen=source.GetLength();
int targetLen=target.GetLength();

int i=0;
int j=0;
//动态声明一个矩阵,用来计算相似度
int **dist=new int *[sourceLen+1];
for (i=0;i<=sourceLen;i++)
{
dist[i]=new int [targetLen+1];
}
//初始化二维数组
for (i=0;i<=sourceLen;i++)
{
for(j=0;j<=targetLen;j++)
{
dist[i][j]=0;
}
}
for (i=0;i<=sourceLen;i++)
{
dist[i][0]=i;
}
for (j=0;j<=targetLen;j++)
{
dist[0][j]=j;
}
//编辑距离算法
for (i=1;i<=sourceLen;i++)
{
for(j=1;j<=targetLen;j++)
{
if (source[i-1]==target[j-1])
{
dist[i][j]=dist[i-1][j-1];//如果相等,则不需要做编辑操作
}
else
{
int edIns=dist[i][j-1]+1;//source插入字符
int edDel=dist[i-1][j]+1;//source删除字符
int edRep=dist[i-1][j-1]+1;//source替换字符
dist[i][j]=Min(Min(edIns,edDel),edRep);
}
}
}
double resurt=1.0-(dist[sourceLen][targetLen]*1.0)/Max(source.GetLength(),target.GetLength())*1.0;
//释放数组内存
for (i=0;i<=sourceLen;i++)
{
delete [] dist[i];
}
delete [] dist;
    //返回最小编辑距离
return resurt;
}

这篇关于Levenshtein算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013515

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖