【杂记-TCP协议三次握手、四次挥手始末详解】

2024-05-28 18:20

本文主要是介绍【杂记-TCP协议三次握手、四次挥手始末详解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三次握手前:

使用TCP协议的原因
TCP协议的目的是为了保证数据能在两端准确、连续的传输。
传输中使用Socket数据结构
TCP协议可使一个设备能同时与多个设备交互信息,它必须要保证不同传输通道之间不会产生串联或相互影响,所以TCP使用Socket数据结构来实现不同设备之间的连接。
Socket包含两个成分:IP地址和端口号,一个设备可以对应一个IP,其中不同的传输通道用不同的端口号区分开来,于是同一个设备发送给其他不同设备的信息就不会产生混乱。
传输控制块TCB的作用
设备可能会产生多种数据并分发给不同的设备,为了确保数据能够正确分发:TCP使用TCB,也叫传输控制块的数据结构把发给不同设备的数据封装起来,该结构看做是信封。
TCB数据块包含数据发送双方的Socket信息,以及装载数据的缓冲区。在两个设备要建立连接和发送数据之前,双方会分配内存建立起TCB数据块。
TCB的打开方式及其状态
无论是客户端还是服务端,在建立连接前都需要准备好TCB数据结构。
客户端TCB主动打开:客户端主动向服务器表达自己想建立数据连接的请求,此时TCB状态为:Active Open(Create TCB)。
服务端TCB被动打开:由于服务器不知道有哪个设备想向它发起连接,因此在构建TCB模块时会默认将客户端对应的Socket数据初始化为0,服务器保持监听,等待客户端从该端口向它发起连接请求,此时TCB状态为:Passive Open(Create TCB)。
双方把自己的Socket和TCB数据结构准备好后,就可以进入三次握手的过程。

二、三次握手过程:

TCP协议终端两种数据包
一种数据包用来传输数据;一种数据包用来发送控制信息(SYN、ACK等),TCP报头中的标志位用于表明数据包是用于数据发送还是用于传输控制信息。
SYN:Synchronize,同步。
ACK:Acknowledge,确认。
TCP报头的标志位
当标志位中的SYN比特位启动时,表明当前数据包目的是实现双方数据状态同步。
当标志位中的ACK比特为启动时,表明数据包用于通知接收方已收到了数据。
一是客户端通知服务器,“我想建立连接”。二是双方通知对方自己数据发送时的“初始序列号”。三是实现参数交换,把自己的有关信息发送给对方。
简述三次握手的过程
TCP三次握手只是建立连接的过程,和后续的数据传输关系不大。
1、两端未建立连接时,均处于初始状态CLOSED。
2、客户端给服务端发送带有初始序列号ISN的SYN数据包,由CLOSED状态进入到SYN_SENT状态。
3、服务端Socket处于监听状态LISTEN,当收到来自客户端的数据包后,会将客户端的ISN的值加1作为ACK包,并和SYN包一起回发给客户端,由LISTEN状态进入到SYN_RCVD状态。
4、客户端收到来自服务端的数据包后,会将客户端的ISN的值加1作为ACK包,并发送给服务端,由SYN_SENT状态进入到ESTABLISH状态。
5、服务端收到来自客户端的ACK数据包后,由SYN_RCVD状态进入到ESTABLISH状态。
6、至此连接连接建立成功,双方互相发送数据。
初始序列号是随机数
为了防止由于网络波动等原因,先后接收到同一序列号导致握手异常,所以初始序列号是一个随机数,而不是每次都以1开始。
另外,三次握手是实现客户端和服务端交互ISN,以便让对方知道如何按序列号组装数据,如果ISN是固定的,攻击者很容易猜出后续的确认号。

三、其他要点

半连接状态(队列)
服务器第一次收到客户端的SYN时(或服务端给客户端回SYN+ACK包时),处于SYN_RCVD状态,此时双方并没有建立连接,服务器会将这种状态下的请求放在一个队列中, 将这种队列称之为半连接队列,全连接队列就是完成三次握手之后,建立的连接就会放在全连接队列中,如果队列满了就有可能出现丢包的现象。
SYN-ACK重传
服务器发送完SYN-ACK包,如果没有收到客户端的ACK确认包,服务器进行首次重传,等待一段时间还没有收到客户端确认包,会进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。
关于数据包的大小
在TCP数据传输过程中往往需要通过控制数据包调整各种控制参数,在三次握手过程中,需要传输的控制参数为最大分片大小,也就是数据包中一次能发送的最大字节数,当要发送的数据大于该参数时,数据就必须分成若干小块分别发送。
握手为什么是三次?
第一次握手,服务端收到客户端发送的数据包,服务端可以得到结论:客户端的发送能力、服务端的接收能力正常。
第二次握手,客户端收到了服务端发送的数据包,客户端得到结论:服务端的接收与发送能力、客户端的接收与发送能力是正常的。
但是,此时服务端不能确认客户端的接收能力是否正常,就需要第三次握手。
即,最少需要三次握手的真正原因是:客户端和服务端都能得到“自己和对方的接收与发送能力均正常”的结论。
握手过程可携带数据吗?
第一次、第二次握手不可以携带数据,其原因是防止服务器受到攻击,服务器不用花费太多时间去处理第一次和第二次,而第三次的时候,客户端已经处于Establish状态,且知道了服务器的接收发送能力正常,所以可以携带数据。

四、四次挥手过程

报文发送过程和两端状态
1、客户端申请断开连接,发送FIN报文(报文中会指定一个序列号)给服务端,客户端由Establish状态进入到FIN_WAIT1状态。
2、服务端收到FIN报文,发送ACK报文(把客户端的序列号值+1作为ACK报文)给客户端,服务端由Establish状态进入到CLOSED_WAIT状态,客户端由FIN_WAIT1状态进入到FIN_WAIT2状态。
3、服务端发送FIN报文(指定一个序列号)给客户端,服务端由CLOSED_WAIT状态进入到LAST_ACK状态。
4、客户端收到FIN报文,发送ACK报文(把服务端的序列号值+1作为ACK报文)给服务端,客户端由FIN_WAIT2状态进入到TIME_WAIT状态。
5、服务端收到ACK报文,由LAST_ACK状态进入到CLOSED状态。
6、客户端在2MSL计时时间后,由TIME_WAIT状态进入到CLOSED状态。
为什么客户端要进入TIME_WAIT状态
客户端发送了ACK之后不会直接到CLOSED状态,需原因就是要确保服务器是否已经收到了ACK报文,如果没有收到的话,服务器会重新发送FIN报文给客户端,客户端再次收到ACK报文之后,就知道之前的ACK丢失了,然后再次发送ACK报文。
而TIME_WAIT持续时间至少是一个报文的来回时间,也就是2MSL,计时时间内没有再次收到FIN报文,就代表对方成功接收ACK报文,此时才会处于CLOSED状态。

这篇关于【杂记-TCP协议三次握手、四次挥手始末详解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011328

相关文章

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

Jitter Injection详解

一、定义与作用 Jitter Injection,即抖动注入,是一种在通信系统中人为地添加抖动的技术。该技术通过在发送端对数据包进行延迟和抖动调整,以实现对整个通信系统的时延和抖动的控制。其主要作用包括: 改善传输质量:通过调整数据包的时延和抖动,可以有效地降低误码率,提高数据传输的可靠性。均衡网络负载:通过对不同的数据流进行不同程度的抖动注入,可以实现网络资源的合理分配,提高整体传输效率。增

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

Steam邮件推送内容有哪些?配置教程详解!

Steam邮件推送功能是否安全?如何个性化邮件推送内容? Steam作为全球最大的数字游戏分发平台之一,不仅提供了海量的游戏资源,还通过邮件推送为用户提供最新的游戏信息、促销活动和个性化推荐。AokSend将详细介绍Steam邮件推送的主要内容。 Steam邮件推送:促销优惠 每当平台举办大型促销活动,如夏季促销、冬季促销、黑色星期五等,用户都会收到邮件通知。这些邮件详细列出了打折游戏、

探索Elastic Search:强大的开源搜索引擎,详解及使用

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选,相信大家多多少少的都听说过它。它可以快速地储存、搜索和分析海量数据。就连维基百科、Stack Overflow、

【杂记-浅谈DHCP动态主机配置协议】

DHCP动态主机配置协议 一、DHCP概述1、定义2、作用3、报文类型 二、DHCP的工作原理三、DHCP服务器的配置和管理 一、DHCP概述 1、定义 DHCP,Dynamic Host Configuration Protocol,动态主机配置协议,是一种网络协议,主要用于在IP网络中自动分配和管理IP地址以及其他网络配置参数。 2、作用 DHCP允许计算机和其他设备通

常用MQ消息中间件Kafka、ZeroMQ和RabbitMQ对比及RabbitMQ详解

1、概述   在现代的分布式系统和实时数据处理领域,消息中间件扮演着关键的角色,用于解决应用程序之间的通信和数据传递的挑战。在众多的消息中间件解决方案中,Kafka、ZeroMQ和RabbitMQ 是备受关注和广泛应用的代表性系统。它们各自具有独特的特点和优势,适用于不同的应用场景和需求。   Kafka 是一个高性能、可扩展的分布式消息队列系统,被设计用于处理大规模的数据流和实时数据传输。它

Linux中拷贝 cp命令中拷贝所有的写法详解

This text from: http://www.jb51.net/article/101641.htm 一、预备  cp就是拷贝,最简单的使用方式就是: cp oldfile newfile 但这样只能拷贝文件,不能拷贝目录,所以通常用: cp -r old/ new/ 那就会把old目录整个拷贝到new目录下。注意,不是把old目录里面的文件拷贝到new目录,

笔记-python之celery使用详解

Celery是一个用于处理异步任务的Python库,它允许你将任务分发到多个worker进行处理。以下是Celery的使用详解: 安装Celery 使用pip安装Celery: pip install celery 创建Celery实例 首先,需要创建一个Celery实例,指定broker(消息中间件)和backend(结果存储)。 from celery import Celeryap