NASA数据集——严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据

本文主要是介绍NASA数据集——严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Alpha Jet Atmopsheric eXperiment Meteorological Measurement System (MMS) Data

阿尔法喷气式大气实验气象测量系统(MMS)数据

简介

Alpha Jet Atmospheric eXperiment (AJAX) 是美国国家航空航天局艾姆斯研究中心与 H211, L.L.C. 公司的合作项目,旨在促进对加利福尼亚、内华达和太平洋沿岸地区进行例行现场测量,以支持卫星验证。标准有效载荷包括经过严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据。每次 2 小时的飞行可完成多个垂直剖面(约 8.5 千米)。十多年来,AJAX 项目一直在定期收集各个季节的痕量气体数据,帮助评估卫星传感器在其大部分寿命期间的健康状况和校准情况,并对该地区其他地方收集的地面和塔基观测数据进行补充。

AJAX 支持美国国家航空航天局的轨道碳观测站 (OCO-2/3)、日本的温室气体观测卫星 (GOSAT) 和 GOSAT-2,并与许多其他研究机构(如加利福尼亚空气资源委员会 (CARB)、国家海洋和大气管理局 (NOAA)、美国林务局 (USFS)、环境保护局 (EPA))开展合作。AJAX 在 2016 年庆祝了其第 200 次科学飞行,之前的研究调查了平流层到对流层的传输、森林火灾羽流、大气河流事件、从亚洲到美国西部的污染远距离传输、城市外流以及天然气泄漏、油田和奶制品厂的排放等各种主题。

数据信息

Resource TypeDataset
Metadata Created DateDecember 1, 2022
Metadata Updated DateDecember 6, 2023
PublisherNASA/LARC/SD/ASDC
Maintainer

Laura Iraci

IdentifierC2166631725-LARC_ASDC
Data First Published2021-03-09
Languageen-US
Data Last Modified2021-11-16
CategoryAJAX, geospatial
Public Access Levelpublic
Bureau Code026:00
Metadata Contexthttps://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog IDhttps://data.nasa.gov/data.json
Schema Versionhttps://project-open-data.cio.gov/v1.1/schema
Catalog Describedbyhttps://project-open-data.cio.gov/v1.1/schema/catalog.json
Citation2021-11-04. Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/ASDC/AJAX_MMS.
Harvest Object Id3607027e-af95-4481-a098-339ecf109ef2
Harvest Source Id58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source TitleNASA Data.json
Homepage URLhttps://doi.org/10.5067/ASDC/AJAX_MMS
Metadata Typegeospatial
Old Spatial<?xml version="1.0" encoding="UTF-8"?><gml:Polygon xmlns:gml="http://www.opengis.net/gml/3.2" srsName="EPSG:9825"><gml:outerBoundaryIs><gml:LinearRing><gml:posList>34.0 -125.0 34.0 -114.0 42.0 -114.0 42.0 -125.0 34.0 -125.0</gml:posList></gml:LinearRing></gml:outerBoundaryIs><gml:innerBoundaryIs></gml:innerBoundaryIs></gml:Polygon>
Program Code026:001
Source Datajson IdentifierTrue
Source Hashd99ed5a45d639b4528d1f039fba22b4855ef37c998be9061bfe8bf9149248174
Source Schema Version1.1
Spatial
Temporal2013-06-20T00:00:00Z/2023-02-28T00:00:00Z

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="AJAX_MMS",cloud_hosted=True,bounding_box=(-165.68, 34.59, -98.1, 71.28),temporal=("2017-07-20", "2017-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Alpha Jet Atmopsheric eXperiment Meteorological Measurement System (MMS) Data - Catalog

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010086

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

便携式气象仪器的主要特点

TH-BQX9】便携式气象仪器,也称为便携式气象仪或便携式自动气象站,是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。以下是关于便携式气象仪器的详细介绍:   主要特点   高精度与多功能:便携式气象仪器能够采集多种气象参数,包括但不限于风速、风向、温度、湿度、气压等,部分高级型号还能监测雨量和辐射等。数据采集与存储:配备微电脑气象数据采集仪,具有实时时钟、数据存

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi