hdu 5001 概率DP 图上的DP

2024-05-28 04:38
文章标签 dp 概率 hdu 图上 5001

本文主要是介绍hdu 5001 概率DP 图上的DP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://acm.hdu.edu.cn/showproblem.php?pid=5001

当时一看是图上的就跪了 不敢写,也没退出来DP方程  

感觉区域赛的题  一则有一个点难以想到 二则就是编码有点难度。

这个题:

我一直的思路就是1-能到达i的概率 就是不能到达i的概率,然后三维方程巴拉巴拉,,,,把自己搞迷糊

正确做法:
dp[k][j]   经过j步到达k点 并且不经过i点的概率 这么设的原因是,就可以求不能到达i点的概率了。   不能到达i点的概率就是segma(dp[v][j-1]/g[v].size())    v是与k相邻的结点,如果j-1步到达v 第j步就有1/g[v].size()的可能性到达k点 

//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <map>
#include <set>
#include <queue>
using namespace std;#define ls(rt) rt*2
#define rs(rt) rt*2+1
#define ll long long
#define ull unsigned long long
#define rep(i,s,e) for(int i=s;i<e;i++)
#define repe(i,s,e) for(int i=s;i<=e;i++)
#define CL(a,b) memset(a,b,sizeof(a))
#define IN(s) freopen(s,"r",stdin)
#define OUT(s) freopen(s,"w",stdout)
const ll ll_INF = ((ull)(-1))>>1;
const double EPS = 1e-8;
const double pi = acos(-1.0);
const int INF = 100000000;const int MAXN = 60;
const int MAX = 10000+100;double ans[MAXN];
double dp[MAXN][MAX];
vector<int>g[MAX];
int n,m,d;void solve()
{for(int i=1;i<=n;i++){CL(dp,0);for(int j=1;j<=d;j++){if(j==1){for(int k=1;k<=n;k++)if(k!=i) dp[k][j]=1.0/n;  //第一步随机选一个点,可以到达任何一个点,所以概率都是1.0/n}else{for(int k=1;k<=n;k++)if(k!=i){for(int t=0;t<g[k].size();t++){int v=g[k][t];if(v!=i)dp[k][j]+=dp[v][j-1]/g[v].size();}}}}double out=0.0;for(int j=1;j<=n;j++)if(j!=i)out+=dp[j][d];printf("%.10lf\n",out);}
}int main()
{//IN("hdu5001.txt");int ncase;scanf("%d",&ncase);while(ncase--){for(int i=0;i<=n;i++)g[i].clear();// for(int i=0;i<=n;i++)ans[i]=0.0;scanf("%d%d%d",&n,&m,&d);d++;//int u,v;for(int i=0;i<m;i++){scanf("%d%d",&u,&v);g[u].push_back(v);g[v].push_back(u);}solve();}return 0;
}


这篇关于hdu 5001 概率DP 图上的DP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009564

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while