LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题]

2024-05-27 23:44

本文主要是介绍LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/139242199

饼干

贪心算法,是在每一步选择中,都采取当前状态下,最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法,在解决各种问题时被广泛应用,包括数组操作、字符串处理、图论等。

贪心算法包括:分配问题区间问题

  1. 455. 分发饼干 - 分配问题
  2. 135. 分发糖果 - 分配问题
  3. 605. 种花问题 - 分配问题
  4. 406. 根据身高重建队列 - 分配问题
  5. 435. 无重叠区间 - 区间问题
  6. 452. 用最少数量的箭引爆气球 - 区间问题
  7. 763. 划分字母区间 - 区间问题
  8. 121. 买卖股票的最佳时机 - 区间问题

1. 分配问题

455. 分发饼干 - 分配问题:

class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:"""时间复杂度,来自于排序,O(mlogm + nlogn)空间复杂度,类似,O(logm + logn)"""g = sorted(g)  # 排序s = sorted(s)n, m = len(g), len(s)  # 序列数量i, j = 0, 0while i < n and j < m:  # 全部遍历if g[i] <= s[j]:  # 判断是否吃饱i += 1  # 孩子满足条件j += 1  # 饼干满足条件return i

135. 分发糖果 - 分配问题:

class Solution:def candy(self, ratings: List[int]) -> int:"""时间复杂度 O(n),空间复杂度 O(n)"""n = len(ratings)  # 序列长度res = [1] * n  # 每个孩子至少1个糖果# 正序遍历for i in range(1, n):if ratings[i] > ratings[i-1]:res[i] = res[i-1] + 1  # 要是后面+1# print(f"[Info] res: {res}")# 逆序遍历for i in range(n-1, 0, -1):if ratings[i-1] > ratings[i]:# 逆序需要最大值res[i-1] = max(res[i-1], res[i]+1)  # print(f"[Info] res: {res}")return sum(res)

605. 种花问题 - 分配问题:

class Solution:def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:"""时间复杂度 O(n),空间复杂度 O(1)"""res = 0  # 种花数量m = len(flowerbed)  # 花坛长度for i in range(m):# 前面是0,中间是0,最后是0,注意边界if (i==0 or flowerbed[i-1] == 0) and (flowerbed[i] == 0) and (i==m-1 or flowerbed[i+1]==0):res += 1flowerbed[i] = 1return res >= n

406. 根据身高重建队列 - 分配问题,读懂题,根据 -p[0] 和 p[1] 排序,再进行插入,根据 p[1],进行插入。

class Solution:def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:"""插入之前的位置时间O(n^2),空间O(logn)"""# p[0] 从大到小排序,再次根据 p[1] 从小到大排序people.sort(key=lambda x: (-x[0], x[1]))  # print(f"[Info] people: {people}")n = len(people)  # 人数res = []for p in people:# print(f"[Info] res: {res}")# 根据 p 值的第2位 [正好有k个人],进行排序插入res.insert(p[1], p)  # 在p[1]前一个位置插入return res

2. 区间问题

435. 无重叠区间 - 区间问题

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:"""时间复杂度 O(nlogn) 空间复杂度 O(logn)"""# 根据 end 值排序intervals = sorted(intervals, key=lambda x: x[1])# print(f"[Info] intervals: {intervals}")n = len(intervals)res = 0prev = intervals[0][1]  # 第1个值的末尾值for i in range(1, n):  # 从第2个值开始if intervals[i][0] < prev:  # 前值小于后值res += 1  # 相交else:prev = intervals[i][1]  # 遍历下一个return res

452. 用最少数量的箭引爆气球 - 区间问题,435 题的变换

class Solution:def findMinArrowShots(self, points: List[List[int]]) -> int:"""区间类型题,与 435 类似时间复杂度 O(nlogn),空间复杂度 O(logn)"""# 尾部排序points = sorted(points, key=lambda x: x[1])n = len(points)prev = points[0][1]  # 前值res = 0for i in range(1, n):if prev >= points[i][0]:res += 1  # 重叠值,即1箭射中2个else:prev = points[i][1]return n - res  # 最终值是差值

763. 划分字母区间 - 区间问题,记录字母最后出现的位置,与之前最大位置比较。

class Solution:def partitionLabels(self, s: str) -> List[int]:"""时间复杂度 O(n),空间复杂度 O(len(s))"""n=len(s)  # 序列长度last=[0]*26  # 字母数量# 遍历获取最后出现的位置for i in range(n):j=ord(s[i])-ord('a')last[j]=max(i,last[j])  # 字母最后出现的位置start,end=0,0res=[]for i in range(n):j=ord(s[i])-ord('a')# 当前字母j最后出现的位置last[j],与之前end,取最大值end=max(end,last[j])if end==i:  # end如果等于ires.append(end-start+1) # 序列长度start=end+1  # 起始位置移动return res

121. 买卖股票的最佳时机 - 区间问题

class Solution:def maxProfit(self, prices: List[int]) -> int:"""时间复杂度 O(n),空间复杂度 O(1)"""n=len(prices)  # 全部数量res=0  # 结果for i in range(1,n):# 累加区间价格res+=max(0,prices[i]-prices[i-1])return res

这篇关于LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008934

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长