本文主要是介绍「动态规划」删除并获得点数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
力扣原题链接,点击跳转。
给你一个整数数组nums。每次操作,可以删除任意一个值n,接着获得点数n,并同时删除所有的n-1和n+1。你最多能获取多少点数?
这个问题的解法相当巧妙。我们可以把问题先转化一下。用类似计数排序的思路,定义一个数组arr,用arr[i]表示所有的点数i的和。比如nums数组:1、2、2、3、3、3,那么arr数组:0、1、4、9,因为1出现1次,和为1;2出现2次,和为2×2=4;3出现3次,和为3×3=9。
盯着这个arr数组,问题就转化为:在arr数组中选取一个子数组,不能同时选取相邻的元素,请找出一个子数组,让这个子数组所有元素的和最大。如果你看到这里,觉得这道题跟某一道经典问题很像,有这种感觉就对了。具体请看我的另一篇博客:「动态规划」打家劫舍,点击跳转。有了打家劫舍的铺垫,这个问题就非常简单了,思路可以说是一模一样。
用动态规划的思路来解决这个问题。首先确定状态表示,用f[i]表示选到下标为i的元素时,必须选择下标为i的元素,子数组的最大和;用g[i]表示选到下标为i的元素时,不能选择下标为i的元素,子数组的最大和。接着推导状态转移方程,显然f[i]=g[i-1]+arr[i],g[i]=max(f[i-1],g[i-1])。初始化f[0]=arr[0]=0,g[0]=0。为什么arr[0]=0呢?因为点数0不管选多少,和都是0。填表时应从左往右同时填表。arr有n个元素,最后返回max(f[n-1],g[n-1])。
class Solution
{
public:int deleteAndEarn(vector<int>& nums){const int N = 10001;// 用arr[i]表示所有点数i的和vector<int> arr(N);for (auto num : nums)arr[num] += num;// 创建dp表vector<int> f(N);auto g = f;// 填表for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[N - 1], g[N - 1]);}
};
这篇关于「动态规划」删除并获得点数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!