图片数据增强-resize(不同插值)、各种模糊

2024-05-27 18:44

本文主要是介绍图片数据增强-resize(不同插值)、各种模糊,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

各种不同的模糊处理

import os
import cv2def apply_blur_to_images(input_folder_path, output_folder_path):# 遍历文件夹下的所有文件for filename in os.listdir(input_folder_path):# 检查文件类型是否为图片if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):# 构建输入图片的完整路径input_image_path = os.path.join(input_folder_path, filename)# 读取图片image = cv2.imread(input_image_path)# 根据不同的模糊方法进行处理for blur_method in ['gaussian', 'mean', 'median', 'bilateral']:# 创建对应的模糊文件夹output_blur_folder_path = os.path.join(output_folder_path, blur_method)os.makedirs(output_blur_folder_path, exist_ok=True)# 根据选择的模糊方法进行处理if blur_method == 'mean':blurred_image = cv2.blur(image, (15, 15))elif blur_method == 'median':blurred_image = cv2.medianBlur(image, 15)elif blur_method == 'bilateral':blurred_image = cv2.bilateralFilter(image, 15, 75, 75)else:blurred_image = cv2.GaussianBlur(image, (15, 15), 0)# 构建输出图片的完整路径output_image_path = os.path.join(output_blur_folder_path, filename)# 保存模糊处理后的图片cv2.imwrite(output_image_path, blurred_image)if __name__ == '__main__':# 文件夹不要有中文!!!!!!!!!# 输入文件夹路径input_folder_path = './data'# 输出文件夹路径output_folder_path = './output'# 调用函数apply_blur_to_images(input_folder_path, output_folder_path)

resize 下采样

import os
import cv2def reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation):# 遍历文件夹下的所有文件for filename in os.listdir(input_folder_path):# 检查文件类型是否为图片if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):# 构建输入图片的完整路径input_image_path = os.path.join(input_folder_path, filename)# 读取图片image = cv2.imread(input_image_path)# 计算目标宽度和高度target_width = int(image.shape[1] * scale_factor)target_height = int(image.shape[0] * scale_factor)# 调整图像尺寸resized_image = cv2.resize(image, (target_width, target_height), interpolation=interpolation)# 构建输出图片的完整路径interpolation_name = get_interpolation_name(interpolation)output_folder = os.path.join(output_folder_path, interpolation_name)os.makedirs(output_folder, exist_ok=True)  # 创建输出文件夹(如果不存在)output_image_path = os.path.join(output_folder, filename)# 保存调整尺寸后的图片cv2.imwrite(output_image_path, resized_image)def get_interpolation_name(interpolation):if interpolation == cv2.INTER_NEAREST:return 'INTER_NEAREST'elif interpolation == cv2.INTER_LINEAR:return 'INTER_LINEAR'elif interpolation == cv2.INTER_CUBIC:return 'INTER_CUBIC'elif interpolation == cv2.INTER_LANCZOS4:return 'INTER_LANCZOS4'else:return 'UNKNOWN'if __name__ == '__main__':# 文件夹不要有中文!!!!!!!!!# 输入文件夹路径input_folder_path = './data'# 输出文件夹路径output_folder_path = './output'# 比例系数scale_factor = 0.5  # 调整为原始图像的一半# 插值方法列表interpolations = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]# 遍历插值方法for interpolation in interpolations:# 调用函数进行图像尺寸调整reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation)

遍历文件夹,结果以名字命令,方便区分
在这里插入图片描述

这篇关于图片数据增强-resize(不同插值)、各种模糊的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008285

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一