数据集006:中药材识别数据集(含数据集下载链接)

2024-05-27 18:36

本文主要是介绍数据集006:中药材识别数据集(含数据集下载链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集简介:

中药材共5类  900张图片   分别是百合 枸杞  党参 槐花 金银花

部分代码:

def get_data_list(target_path,train_list_path,eval_list_path):'''生成数据列表'''#存放所有类别的信息class_detail = []#获取所有类别保存的文件夹名称data_list_path=target_path+"Chinese Medicine/"class_dirs = os.listdir(data_list_path)  #总的图像数量all_class_images = 0#存放类别标签class_label=0#存放类别数目class_dim = 0#存储要写进eval.txt和train.txt中的内容trainer_list=[]eval_list=[]#读取每个类别,['river', 'lawn','church','ice','desert']for class_dir in class_dirs:if class_dir != ".DS_Store":class_dim += 1#每个类别的信息class_detail_list = {}eval_sum = 0trainer_sum = 0#统计每个类别有多少张图片class_sum = 0#获取类别路径 path = data_list_path  + class_dir# 获取所有图片img_paths = os.listdir(path)for img_path in img_paths:                                  # 遍历文件夹下的每个图片name_path = path + '/' + img_path                       # 每张图片的路径if class_sum % 8 == 0:                                  # 每8张图片取一个做验证数据eval_sum += 1                                       # test_sum为测试数据的数目eval_list.append(name_path + "\t%d" % class_label + "\n")else:trainer_sum += 1 trainer_list.append(name_path + "\t%d" % class_label + "\n")#trainer_sum测试数据的数目class_sum += 1                                          #每类图片的数目all_class_images += 1                                   #所有类图片的数目# 说明的json文件的class_detail数据class_detail_list['class_name'] = class_dir             #类别名称class_detail_list['class_label'] = class_label          #类别标签class_detail_list['class_eval_images'] = eval_sum       #该类数据的测试集数目class_detail_list['class_trainer_images'] = trainer_sum #该类数据的训练集数目class_detail.append(class_detail_list)  #初始化标签列表train_parameters['label_dict'][str(class_label)] = class_dirclass_label += 1 #初始化分类数train_parameters['class_dim'] = class_dim#乱序  random.shuffle(eval_list)with open(eval_list_path, 'a') as f:for eval_image in eval_list:f.write(eval_image) random.shuffle(trainer_list)with open(train_list_path, 'a') as f2:for train_image in trainer_list:f2.write(train_image) # 说明的json文件信息readjson = {}readjson['all_class_name'] = data_list_path                  #文件父目录readjson['all_class_images'] = all_class_imagesreadjson['class_detail'] = class_detailjsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))with open(train_parameters['readme_path'],'w') as f:f.write(jsons)print ('生成数据列表完成!')
class dataset(Dataset):def __init__(self, data_path, mode='train'):"""数据读取器:param data_path: 数据集所在路径:param mode: train or eval"""super().__init__()self.data_path = data_pathself.img_paths = []self.labels = []if mode == 'train':with open(os.path.join(self.data_path, "train.txt"), "r", encoding="utf-8") as f:self.info = f.readlines()for img_info in self.info:img_path, label = img_info.strip().split('\t')self.img_paths.append(img_path)self.labels.append(int(label))else:with open(os.path.join(self.data_path, "eval.txt"), "r", encoding="utf-8") as f:self.info = f.readlines()for img_info in self.info:img_path, label = img_info.strip().split('\t')self.img_paths.append(img_path)self.labels.append(int(label))def __getitem__(self, index):"""获取一组数据:param index: 文件索引号:return:"""# 第一步打开图像文件并获取label值img_path = self.img_paths[index]img = Image.open(img_path)if img.mode != 'RGB':img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1)) / 255label = self.labels[index]label = np.array([label], dtype="int64")return img, labeldef print_sample(self, index: int = 0):print("文件名", self.img_paths[index], "\t标签值", self.labels[index])def __len__(self):return len(self.img_paths)

model = VGGNet()
model.train()
cross_entropy = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=train_parameters['learning_strategy']['lr'],parameters=model.parameters()) steps = 0
Iters, total_loss, total_acc = [], [], []for epo in range(train_parameters['num_epochs']):for _, data in enumerate(train_loader()):steps += 1x_data = data[0]y_data = data[1]predicts, acc = model(x_data, y_data)loss = cross_entropy(predicts, y_data)loss.backward()optimizer.step()optimizer.clear_grad()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(loss.numpy()[0])total_acc.append(acc.numpy()[0])#打印中间过程print('epo: {}, step: {}, loss is: {}, acc is: {}'\.format(epo, steps, loss.numpy(), acc.numpy()))#保存模型参数if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps) + '.pdparams'print('save model to: ' + save_path)paddle.save(model.state_dict(),save_path)
paddle.save(model.state_dict(),train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
draw_process("trainning loss","red",Iters,total_loss,"trainning loss")
draw_process("trainning acc","green",Iters,total_acc,"trainning acc")

数据集链接:中药材识别数据集

这篇关于数据集006:中药材识别数据集(含数据集下载链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008265

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指