riscv的异常与中断

2024-05-27 15:18
文章标签 异常 中断 riscv

本文主要是介绍riscv的异常与中断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 广义异常分类
        • 广义异常的发生
        • 广义异常处理流程
        • 狭义异常的编程
        • 狭义中断的编程

广义异常分类
riscv 的异常(广义的异常)包括 // 与 arm 类似 , 参考 https://blog.csdn.net/u011011827/article/details/117431707狭义的异常 // 异常总是同步的,精确的取指令访问到非法的地址空间读写数据访问地址属性出错取指令地址非对齐非法指令错误执行调试断点指令(ebreak) // ebreak 除了可能会导致 进入 异常, 还可能进入 debug mode (二选一)狭义的中断 // 中断总是异步的精确异常 : 外部中断(由PLIC综合出来的一个bit线)非精确异常:读写存储器出错
狭义异常分为以下几种 // 根据 mcause 中 的分类illegal instructionbreakpoint
狭义中断分为以下几种 // 根据 mcause 中 的分类三个模式下的 软中断三个模式下的 timer 中断三个模式下的 外部中断debugint // 这个具体对应 mcause 中的哪一个  TODO
广义异常的发生
狭义异常分为以下几种 // 根据 mcause 中 的分类illegal instructionbreakpoint软件执行 ebreak 指令 		可能会进入
狭义中断分为以下几种 // 根据 mcause 中 的分类三个模式下的 软中断软件执行 写1 到 msip 寄存器 	会进入三个模式下的 timer 中断mtime(会变化的值,类似于mcycle)中的计数值大于等于 mtimecmp(固定值)中的值 , 会进入三个模式下的 外部中断PLIC将多个PLIC外部的中断源仲裁为一个单比特的中断信号送入处理器核 , 会进入debugint // 这个具体对应 mcause 中的哪一个  TODO

多个狭义中断同时发生,按以下顺序发生1. 外部中断2. 软中断3. timer中断
广义异常处理流程
  • 广义异常进入流程
0. 广义异常发生
1. halt
2. 设置 CSRmcause	// riscv privileged P36 3.1.16 Machine Cause Registermepc	// riscv privileged P36 3.1.15 Machine Exception Program Countermtval	// riscv privileged P38 3.1.17 Machine Trap Valuemstatus // riscv privileged P20 3.1.6 Machine Status Register// clear MIE , 狭义中断 不会再发生 , 狭义异常还可能再发生
3. 设置PC// 即dpc分两种情况针对 mevec的MODE为0 , PC设置 为  单一入口 trap_entry // trap_entry 中要处理所有的广义异常情况针对 mtvec的MODE为1 , PC设置 为 trap_entery . BASE+4*(1) ... BASE+4*(编号) // trap_entery 要处理除了 mtvec[1] ... 之外的所有异常情况// 这里的编号可能是 	PLIC 中的标号 , 取决于实现// 这里的编号也可能是 mcause 中 int 的编号 , 取决于实现
4. resume request
5. 开始执行软件代码针对中断要 清  pending对于异常要根据 异常指令 , 控制 mepc+=2 或 mepc+=4
  • 广义异常退出流程
6. 执行mret
7. halt
8. 恢复CSRmcause	// riscv privileged P36 3.1.16 Machine Cause Registermepc	// riscv privileged P36 3.1.15 Machine Exception Program Countermtval	// riscv privileged P38 3.1.17 Machine Trap Valuemstatus // riscv privileged P20 3.1.6 Machine Status Register
9. 设置PCPC=mepc
10. resume request
11. 开始执行软件代码
狭义异常的编程
狭义异常的发生不可屏蔽
狭义中断的编程
狭义中断的发生 可通过 clear mstatus 中的 MIE 屏蔽 // 所有的狭义中断
  • 三个模式下的 外部中断 // 以M-mode为例
狭义中断中的 外部中断的发生 可通过 clear mie 的 MEIE 屏蔽 // 所有的外部中断
不管 是否屏蔽 , 只要 外部中断 出现(不是发生), 就会将 mip 的 MEIP 域 set 
怎么清除 MEIP?machine mode ext interrupt flowdevice -> plic -> MIE(MEIE) -> MSTATUS(MIE)config1   config2 config3 	   config4config1 是要确保 device 能产生中断 // 假设该中断会被 plic 标记 number 为 5
config2 是能确保 中断号 为 5 的 中断 能够正确配置(优先级,feature),而且能够enable
config3 是能够确保 MIE 的 MEIE bit 能够enable
config4 是能够确保 MSTATUS 的 MIE bit 能够 enable如果四个config 都能够 确保,那么肯定会产生中断 ,但是中断函数的进入是另一回事
  • 三个模式下的 timer 中断
狭义中断中的 timer 中断的发生 可通过 clear mie 的 MTIE 屏蔽 // 所有的外部中断
不管 是否屏蔽 , 只要 timer中断 出现(不是发生), 就会将 mip 的 MTIP 域 set  
怎么清除 MTIP?machine mode mtimer interrupt flowmtimer -> MIE(MTIE) -> MSTATUS(MIE)config1   config2 		config3config1 是确保 mtimer 能够中断(只需要设置比较寄存器即可)
config2 是能够确保 MIE 的 MTIE bit 能够enable
config3 是能够确保 MSTATUS 的 MIE bit 能够 enable
  • 三个模式下的 软中断
狭义中断中的 软 中断的发生 可通过 clear mie 的 MSIE 屏蔽 // 所有的外部中断
不管 是否屏蔽 , 只要 软中断 出现(不是发生), 就会将 mip 的 MSIP 域 set  
怎么清除 MSIP?machine mode mtimer interrupt flowplic_sw -> MIE(MSIE) -> MSTATUS(MIE)config1   config2 		config3config1 是确保 plic_sw 能够中断
config2 是能够确保 MIE 的 MSIE bit 能够enable
config3 是能够确保 MSTATUS 的 MIE bit 能够 enable

这篇关于riscv的异常与中断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007842

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法   消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法 [转载]原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

org.hibernate.hql.ast.QuerySyntaxException:is not mapped 异常总结

org.hibernate.hql.ast.QuerySyntaxException: User is not mapped [select u from User u where u.userName=:userName and u.password=:password] 上面的异常的抛出主要有几个方面:1、最容易想到的,就是你的from是实体类而不是表名,这个应该大家都知道,注意

C++第四十七弹---深入理解异常机制:try, catch, throw全面解析

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】 目录 1.C语言传统的处理错误的方式 2.C++异常概念 3. 异常的使用 3.1 异常的抛出和捕获 3.2 异常的重新抛出 3.3 异常安全 3.4 异常规范 4.自定义异常体系 5.C++标准库的异常体系 1.C语言传统的处理错误的方式 传统的错误处理机制:

argodb自定义函数读取hdfs文件的注意点,避免FileSystem已关闭异常

一、问题描述 一位同学反馈,他写的argo存过中调用了一个自定义函数,函数会加载hdfs上的一个文件,但有些节点会报FileSystem closed异常,同时有时任务会成功,有时会失败。 二、问题分析 argodb的计算引擎是基于spark的定制化引擎,对于自定义函数的调用跟hive on spark的是一致的。udf要通过反射生成实例,然后迭代调用evaluate。通过代码分析,udf在

FreeRTOS学习笔记(四)Freertos的中断管理及临界保护

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Cortex-M 中断管理1.1 中断优先级分组1.2 相关寄存器1.3 相关宏定义1.4 FreeRTOS 开关中断 二、临界段及其保护2.1 taskENTER_CRITICAL( ) 和 taskEXIT_CRITICAL( )2.2 taskENTER_CRITICAL_FROM_ISR( )