【设计模式深度剖析】【4】【结构型】【组合模式】| 以文件系统为例加深理解

本文主要是介绍【设计模式深度剖析】【4】【结构型】【组合模式】| 以文件系统为例加深理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👈️上一篇:适配器模式

设计模式深度剖析-专栏👈️

目 录

  • 组合模式
  • 定义
    • 英文原话
    • 直译
    • 如何理解?
  • 3个角色
    • UML类图
    • 代码示例
  • 组合模式的优点
  • 组合模式的使用场景
  • 示例解析:文件系统

组合模式

组合模式(Composite Pattern)也叫合成模式,用来描述部分与整体的关系。

  • 高层模块调用简单。一棵树形结构中的所有节点都是 Component,局部和整体对调用者来说没有任何区别,即高层模块不必关心自己处理的是单个对象还是整个组合结构**,**简化了高层模块的代码。
  • 节点自由增加。使用组合模式后,如果想增加一个树枝节点、树叶节点只需要找到其父节点即可。

当我们发现需求中是体现部分与整体层次的结构时,以及希望用户可以忽略组合对象与单个对象的不同,统一地使用组合结构中的所有对象时,就应该考虑用组合模式了。

定义

英文原话

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.

直译

将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端能够统一地处理单个对象和对象的组合。

如何理解?

叶子构件和容器构件实现了抽象构件,即实现了相同的接口,用户对单个对象和组合对象的使用具有一致性。

3个角色

UML类图

CompositePattern.png

组合模式(Composite Pattern)允许我们将对象组合成树形结构以表示“部分整体”的层次结构,使得客户端以统一的方式处理单个对象和对象的组合。以下是组合模式中的主要角色:

  1. 抽象构件(Component):它可以是接口或抽象类,为叶子和容器对象声明接口,在该接口中包含用于管理子对象的方法以及用于自身操作的方法。在组合模式中,抽象构件定义了叶子和容器构件的共同行为。
  2. 叶子构件(Leaf):叶子对象继承自抽象构件,它没有子节点,通常用于实现抽象构件中的业务方法。在组合结构中,叶子节点没有子节点,其实现了在抽象构件中定义的行为。
  3. 容器构件(Composite):容器对象也继承自抽象构件,并包含一组子构件。它实现了在抽象构件中定义的行为,并提供了添加、删除和访问其子对象的方法。容器构件可以包含其他容器或叶子,从而实现复杂的树形结构。
  4. 客户端(Client):通过抽象构件接口与组合结构进行交互。对于客户端而言,叶子对象和容器对象是一致的,客户端不需要区分它们。

代码示例

以下是一个简单的Java示例来说明组合模式:

// 抽象构件  
public interface Component {void operation();
}
// 叶子构件  
public class Leaf implements Component{@Overridepublic void operation() {// 业务处理逻辑System.out.println("leaf...");}
}
// 容器构件  
public class Composite implements Component {// 构件容器private ArrayList<Component> componentList = new ArrayList<>();// 添加构件public void add(Component component) {this.componentList.add(component);}// 删除构件public void remove(Component component) {this.componentList.remove(component);}// 获取子构件public ArrayList<Component> getChild() {return this.componentList;}@Overridepublic void operation() {// 业务逻辑System.out.println("branch...");}
}
// 客户端代码  
public class DemoTest {public static void main(String[] args) {// 创建一个根节点Composite root = new Composite();root.operation();// 创建树枝节点Composite branch = new Composite();// 创建叶子节点Leaf leaf = new Leaf();// 构建树形结构root.add(branch);branch.add(leaf);display(root);}// 遍历树(递归)public static void display(Composite root) {for (Component c : root.getChild()) {if(c instanceof Leaf){// 如果节点类型是叶子节点c.operation();}else{// 树枝节点c.operation();display((Composite) c);}}}
}
/* Output:
branch...
branch...
leaf...
*///~

在这个例子中,我们有一个Component接口,它定义了一个名为operation的方法。Leaf类实现了这个接口,并提供了具体的实现。Composite类同样实现了Component接口,并维护了一个子组件的列表。

组合模式的优点

  1. 高层模块调用简单。一棵树形机构中的所有节点都是 Component,局部和整体对调用者来说没有任何区别即高层模块不必关心自己处理的是单个对象还是整个组合结构,简化了高层模块的代码
  2. 节点自由增加。使用组合模式后,如果想增加一个树枝节点、树叶节点只需要找到其父节点即可。

组合模式的使用场景

使用组合模式的典型场景如下。

  1. 需要描述对象的部分和整体的等级结构,如树形菜单、文件和文件夹管理
  2. 需要客户端忽略个体构件和组合构件的区别,平等对待所有的构件

示例解析:文件系统

FileSystemDemo.png

在生活中,一个常见的组合模式的例子是文件系统。文件系统中的文件和文件夹可以看作是组合模式的实现,其中文件夹可以包含文件和其他文件夹(子文件夹),而文件则不包含任何子项。

以下是使用Java实现的示例,模拟了一个简单的文件系统:

// 抽象构件:文件或文件夹  
public interface FileSystemElement {  void display();  
}  
// 叶子构件:文件  
public class File implements FileSystemElement {  private String name;  public File(String name) {  this.name = name;  }  @Override  public void display() {  System.out.println("File: " + name);  }  
}  
// 容器构件:文件夹  
public class Folder implements FileSystemElement {  private String name;  private List<FileSystemElement> children = new ArrayList<>();  public Folder(String name) {  this.name = name;  }  public void add(FileSystemElement element) {  children.add(element);  }  public void remove(FileSystemElement element) {  children.remove(element);  }  @Override  public void display() {  System.out.println("Folder: " + name);  for (FileSystemElement child : children) {  child.display();  }  }  
}  
// 客户端代码
public class DemoTest {public static void main(String[] args) {// 创建文件夹和文件  Folder rootFolder = new Folder("root");Folder documentsFolder = new Folder("Documents");Folder picturesFolder = new Folder("Pictures");File file1 = new File("example.txt");File file2 = new File("image.jpg");// 将文件和文件夹添加到对应的父文件夹中  rootFolder.add(documentsFolder);rootFolder.add(picturesFolder);documentsFolder.add(file1);picturesFolder.add(file2);// 显示整个文件系统的结构  rootFolder.display();}
}/* Output:
Folder: root
Folder: Documents
File: example.txt
Folder: Pictures
File: image.jpg
*///~

在这个示例中,FileSystemElement是抽象构件接口,它声明了一个display方法用于显示文件或文件夹的信息。File类实现了这个接口,表示一个具体的文件。Folder类也实现了这个接口,表示一个文件夹,并且它有一个children列表来存储其子元素(文件和文件夹)。Folder类还提供了添加和删除子元素的方法。

DemoTest类的main方法中,我们创建了一个根文件夹rootFolder,并添加了documentsFolderpicturesFolder两个子文件夹。接着,我们向这两个文件夹中分别添加了一个文件和图片。最后,我们调用rootFolderdisplay方法来显示整个文件系统的结构。

这个输出展示了组合模式中的层次结构,其中文件夹可以包含文件和子文件夹,而文件则不包含任何子项。

👈️上一篇:适配器模式

设计模式深度剖析-专栏👈️

这篇关于【设计模式深度剖析】【4】【结构型】【组合模式】| 以文件系统为例加深理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006997

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象