激活函数原函数和导数的绘制及饱和度-- 021

2024-05-27 00:08

本文主要是介绍激活函数原函数和导数的绘制及饱和度-- 021,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微信公众号:python宝
关注可了解更多的python相关知识。若有问题或建议,请公众号留言;

内容目录

一、激活函数简介二、Sigmoid三、tanh四、ReLU      五、其它激活函数及饱和度

一、激活函数简介

    深度学习的发展一般分为三个阶段,感知机-->三层神经网络-->深度学习(表示学习)。早先的感知机由于采用线性模型,无法解决异或问题,表示能力受到限制。为此三层神经网络放弃了感知机良好的解释性,而引入非线性激活函数来增加模型的表示能力,非线性变换函数又被称为激活函数。

1)非线性激活函数的引入,使得模型能解决非线性问题;
2)引入激活函数之后,不再会有0损失的情况,损失函数采用对数损失,这也使得三层神经网络更像是三层多元(神经单元)逻辑回归的复合。

  神经网络中每一个神经元都可以看作是一个逻辑回归模型,三层神经网络就是三层逻辑回归模型的复合,只是不像逻辑回归中只有一个神经元,一般输入层和隐藏层都是具有多个神经元,而输出层对应一个logistic回归单元或者softmax单元,或者一个线性回归模型。

  如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。

        如果使用激活函数,会给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

        值得注意的是激活函数是一个数值操作,不涉及矩阵求导,线性函数中1/m是因为w是作用于m个样本,所以在确定负梯度方向时需要m个样本取均值。

二、Sigmoid

  Sigmoid函数会造成梯度损失。

        一个非常不好的地方在于Sigmoid在靠近1和0的两端时梯度几乎为0,而反向传播算法的梯度向下传播时,每过一层就会增加一个g′(z)项(Sigmoid关于每一层线性组合值的导数),且Sigmoid函数的导数满足f′(x)=f(x)(1−f(x)),又f(x)的值在(0, 1)之间,故f′(x)的值在(0, 0.25]之间,因此当神经网络层数非常深的时候,较深层的梯度值由于乘了很多值很小的数更变得很小,导致较深层的参数更新不动,这就是“梯度消失”现象。另外,如果使用Sigmoid函数,那么需要在权重初始化的时候非常小心,如果初始化的权重过大,经过线性激活函数也会导致大多数神经元变得饱和,没有办法更新参数。

  Sigmoid输出并非zero-centered,不便于下层的计算

        这就会导致经过Sigmoid激活函数之后的输出,作为后面一层的输入的时候是非0均值的,这个时候如果输入进入下一层神经元的时候全是正的,那么在更新参数时永远都是正梯度。怎么理解呢?比如下一层神经元的输入是x,参数是w和b,那么输出为f=wx+b,这个时候▽f(w)=x,所以如果x是0均值的数据,那么梯度就会有正有负,但是这个问题并不是很严重,因为一般神经网络在训练的时候

这篇关于激活函数原函数和导数的绘制及饱和度-- 021的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005975

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

JavaSE(十三)——函数式编程(Lambda表达式、方法引用、Stream流)

函数式编程 函数式编程 是 Java 8 引入的一个重要特性,它允许开发者以函数作为一等公民(first-class citizens)的方式编程,即函数可以作为参数传递给其他函数,也可以作为返回值。 这极大地提高了代码的可读性、可维护性和复用性。函数式编程的核心概念包括高阶函数、Lambda 表达式、函数式接口、流(Streams)和 Optional 类等。 函数式编程的核心是Lambda