C++笔记:Hash Function 散列函数

2024-05-26 21:28

本文主要是介绍C++笔记:Hash Function 散列函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Hash Function 散列函数

  • 简单的Hash实现:
class CustomerHash {
public:size_t operator()(const Customer& c) const {return hash<std::string>()(c.fname) +  // first namehash<std::string>()(c.lname) +  // last namehash<long>()(c.no);// 返回hash_code}
};
  • 针对Customer类对象,直接对其各个成员变量分别调用标准库中的hash函数,并将得到的哈希值相加。

  • 虽然简单,但这种实现方式可能会导致哈希冲突(即不同对象可能产生相同的哈希值)。

  • 改进的Hash实现

class CustomerHash {
public:size_t operator()(const Customer& c) const {return hash_val(c.frame, c.lname, c.no);}
};
template <typename... Type>
inline size_t hash_val(const Type&... args){size_t seed = 0;hash_val(seed, args...);return seed;  //seed最终就被视为hash code
}
  • 顶层主函数:初始化 seed 为0,调用 hash_val递归处理所有参数,并返回最终的哈希值。
template <typename T, typename... Types>
inline void hash_val(size_t& seed, const T& val, const Type&... args){hash_combine(seed, val);hash_val(seed, args);
};
  • 这是一个递归函数模板,它处理一个或多个参数:
    • 首先,调用 hash_combine函数处理当前参数 val并更新 seed
    • 然后,递归调用自身处理剩余的参数
template <typename T>
inline void hash_val(size_t& seed, const T& val){hash_combine(seed, val);
}
  • 这是上面递归函数的终止版本,当没有更多参数时,只处理最后一个参数
#include<functional>
template <typename T>
inline void hash_combine(size_t& seed, const T& val){seed ^= hash<T>()(val) + 0x9e3779b9 + (seed<<6) + (seed<<2);
}
  • 结合当前的哈希值和传入的值来更新seed使用了一些常见的哈希组合技巧(例如魔数0x9e3779b9),以减少冲突。

  • 以struct hash 偏特化的形式实现Hash function

    • std 命名空间中特化 hash 结构体以支持 MyString 类型
namespace std {template<>struct hash<MyString> {size_t operator()(const MyString& s) const noexcept {return hash<string>()(s.get());}};
}

2. tuple

  • 构造方式:
// 构造方式1
tuple<int, float, string> t1(41, 6.3, "nico");
cout << "t1: " << get<0>(t1) << " " << get<1>(t1) << " " << get<2>(t1) << endl;// 构造方式2
auto t2 = make_tuple(22, 44, "stacy");// 构造方式3
tuple<int,float,string> t3(77, 1.1, "more light");
int i1;
float f1;
stting s1;
tie(i1, f1, s1) = t3;
  • 用例:
tuple<int, float, string> t(41, 6.3, "nico"); // 调用了构造函数
t.head() // 调用了head()函数,返回 41
t.tail() // 调用了tail()函数,返回 tuple<float, string>
t.tail().head() // 调用了tail()然后是head()函数,返回 6.3
t.tail().tail().head() // 调用了两次tail()然后是head()函数,返回 "nico"
&(t.tail()) // 调用了tail()函数,返回 tuple<float, string> 的引用
  • 源码:
// 这是一个变长模板声明,表示tuple类可以接受任意数量和类型的模板参数
template<typename... Values> class tuple;
template<> class tuple<> {};
template<typename Head, typename... Tail>
class tuple<Head, Tail...> : public tuple<Tail...>
{typedef tuple<Tail...> inherited;
public:tuple() {};tuple(Head v, Tail... vtail) : m_head(v), inheriter(vtail...) {}typename Head::type head() { return m_head;}inherited& tail { return *this;}
protected:Head m_head;
};
  • tuple<Head, Tail...>递归地继承了tuple<Tail...>,即剩下的参数组成的元组。
    • tuple<int, float, string> : private tuple<float, string>
    • tuple<float, string> : private tuple<string>
    • tuple<string>
  • t.tail()中,调用tail()函数,tail()返回*this。此时,*this指向的对象类型是tuple<int, float, string>,但通过类型转换返回为inherited&,即tuple<float, string>&
  • t.tail() 会返回一个 tuple<float, string>
  • &(t.tail()) 会返回一个tuple<float, string>的引用

3. type traits

 

应用:

template <typename T>
void type_traits_output(const T&x)
{cout << "\\n type traits for type:" << typeid(T).name() << endl;cout << "is_void\\t" << is_void<T>::value << endl; // 0 or 1cout << "is_integral\\t" << is_integral<T>::value << endl; // 0 or 1...
}int i = 0;
double d = 0.0;
type_traits_output(i);
type_traits_output(d);

4. type traits中is_void的实现

为什么判断void时需要移除volatile和const限定符?

假设你有一个类型是const voidvolatile void,这些类型本质上还是void类型,只是加了限定符。如果不去除这些限定符,直接判断类型是否为void,判断结果将会是错误的,因为const voidvoid在严格意义上是不同的类型。

通过移除这些限定符,可以确保我们判断的基础类型是void,而不是const voidvolatile void。这确保了类型特性模板的准确性和一致性。

  • 移除volatile限定符:
// 如果类型不带volatile限定符,通用模板直接定义type为原始类型_Tp
template<typename _Tp>
struct remove_volatile {typedef _Tp type;
};// 如果类型带有volatile限定符,特化模板定义会去掉volatile限定符
template<typename _Tp>
struct remove_volatile<_Tp volatile> {typedef _Tp type;
};
  • 移除const限定符
template<typename _Tp>
struct remove_const {typedef _Tp type;
};template<typename _Tp>
struct remove_const<_Tp const> {typedef _Tp type;
};
  • 移除constvolatile限定符:
template<typename _Tp>
struct remove_cv {typedef typename remove_const<typename remove_volatile<_Tp>::type>::type type;
};
  • 判断是否为void 类型:
template<typename>
struct __is_void_helper : public false_type {};template<>
struct __is_void_helper<void> : public true_type {};
  • 最终的is_void实现
template<typename _Tp>
struct is_void : public __is_void_helper<typename remove_cv<_Tp>::type> {};

5. cout 标准输出流

  • ostream类是标准C++库中的输出流类,定义在<ostream>头文件中。这个类提供了多种运算符重载,以便将不同类型的数据输出到流中
ostream& operator<<(char c) {// 输出一个字符return *this;
}ostream& operator<<(unsigned char c) {// 输出一个无符号字符return *this << static_cast<char>(c);
}ostream& operator<<(signed char c) {// 输出一个有符号字符return *this << static_cast<char>(c);
}ostream& operator<<(const char* s) {// 输出一个C风格字符串return *this;
}ostream& operator<<(const unsigned char* s) {// 输出一个无符号字符指针,转换为C风格字符串return *this << reinterpret_cast<const char*>(s);
}ostream& operator<<(const signed char* s) {// 输出一个有符号字符指针,转换为C风格字符串return *this << reinterpret_cast<const char*>(s);
}ostream& operator<<(const void* p) {// 输出一个指针return *this;
}ostream& operator<<(int n) {// 输出一个整数return *this;
}ostream& operator<<(unsigned int n) {// 输出一个无符号整数return *this;
}ostream& operator<<(long n) {// 输出一个长整数return *this;
}ostream& operator<<(unsigned long n) {// 输出一个无符号长整数return *this;
}
  • cout是一个全局的_IO_ostream_withassign对象,表示标准输出流。其继承自ostream,并提供赋值运算符的重载。
class _IO_ostream_withassign : public ostream {
public:_IO_ostream_withassign& operator=(ostream& os) {// 实现赋值操作// 允许将一个ostream对象赋值给_IO_ostream_withassign对象return *this;}_IO_ostream_withassign& operator=(_IO_ostream_withassign& rhs) {// 实现赋值操作return operator=(static_cast<ostream&>(rhs));}
};extern _IO_ostream_withassign cout;

6.moveable元素对于vector速度效能的影响

  • 深拷贝:创建一个新对象,并复制所有的原始对象的数据,包括指向动态分配内存的指针。深拷贝确保新对象和原始对象独立,修改一个不会影响另一个。

    // 拷贝构造函数
    MyString(const MyString& other) {len = other.len;data = new char[len + 1];  // 为新对象开辟内存strcpy(data, other.data);  // 将原对象的数据复制到新对象
    }// 拷贝赋值运算符
    MyString& operator=(const MyString& str) {if (this != &str) {if (_data) delete[] _data;_len = str._len;_init_data(str._data);  // 复制数据}return *this;
    }
    
  • 浅拷贝:只复制对象的成员变量的值,包括指针的值。这意味着复制后的对象和原始对象共享同一块动态分配的内存。这可能会造成一个对象销毁时释放了共享的内存时,导致另一个对象访问无效内存。

    MyString(const Mystring& other) {len = other.len;data = other.data;
    }
    
  • 移动语义(Move Semantics):通过转移指针操作将资源从一个对象转移到另一个对象,避免深拷贝。通过移动构造函数和移动赋值运算符实现。

    #include <utility>
    class  MyString {
    public:// 移动构造函数// data = other.data; 新对象直接使用原对象的指针。MyString(MyString&& other) noexcept: data(other.data), len(other.len) {other.data = nullptr; // 将原对象的指针设置为nullptr,防止原对象析构时释放内存other.len = 0;}// 移动赋值运算符MyString& operator=(MyString&& other) noexcept {if (this == &other) return *this;delete[] data;data = other.data;len = other.len;other.data = nullptr;other.len = 0;return *this;}// 析构函数~MyString() {++Dtor;if (_data) delete[] _data;}// 禁用拷贝构造函数和拷贝赋值运算符MyString(const MyString& other) = delete;MyString& operator=(const MyString& other) = delete;
    
  • 具体示例

    int main() {Mystring str1("Hello, world!");// 调用拷贝构造函数Mystring str2 = str1;cout << str2 << endl;  // "Hello, world!"// 调用移动构造函数Mystring str3 = move(str1);cout << str3 << endl;  // "Hello, world!"cout << str1 << endl;  // 空,因为str1的资源已经转移
    

这篇关于C++笔记:Hash Function 散列函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005630

相关文章

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高