【STM32单片机】----实现LED灯闪烁实战

2024-05-26 19:04

本文主要是介绍【STM32单片机】----实现LED灯闪烁实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

34889d2e7fec4a02bb0ae3a22b011a2a.png

🎩 欢迎来到技术探索的奇幻世界👨‍💻

📜 个人主页:@一伦明悦-CSDN博客

✍🏻 作者简介: C++软件开发、Python机器学习爱好者

🗣️ 互动与支持💬评论      👍🏻点赞      📂收藏     👀关注+

如果文章有所帮助,欢迎留下您宝贵的评论,

点赞加收藏支持我,点击关注,一起进步!

前言

       STM32是一系列由STMicroelectronics开发的32位ARM Cortex-M微控制器系列,广泛应用于嵌入式系统中。它们提供了丰富的外设和性能,适用于各种应用领域,包括工业控制、汽车、消费电子等。STM32系列有多个产品系列,每个系列针对不同的应用需求提供了多种型号和配置选项。要对STM32有一个全面的总结,可以涵盖其主要特点、产品系列、应用领域、开发工具和生态系统等方面的信息。

        代码实现资源链接

【免费】STM32实现LED灯闪烁资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/m0_59951855/89359786?spm=1001.2014.3001.5503

正文

01-LED灯1实现

       当想要在STM32单片机上实现LED灯的闪烁时,可以遵循以下步骤:

  1. 初始化GPIO引脚:首先,需要初始化用于连接LED的GPIO引脚。这包括设置引脚的模式(输入/输出)、速度、上拉/下拉等。

  2. 配置定时器(Timer):使用一个定时器来生成定期的中断,以便控制LED的闪烁频率。可以选择适当的定时器和预分频器来生成适当的时钟频率。

  3. 编写中断服务程序(ISR):在定时器中断服务程序中,可以切换LED的状态,从而使其闪烁。可以在每次中断时切换LED的状态,或者根据需要计算适当的间隔。

  4. 编写主程序:在主程序中初始化所有必要的硬件和变量,并启动定时器。然后,可以让主程序进入一个无限循环,在循环中等待定时器中断。

  5. 编译和下载程序:最后,将程序编译为可执行文件,并通过调试器将其下载到STM32单片机中进行测试。

        LED灯1实现

        LED1.h文件:

        这段.h文件是LED模块的头文件,用于声明LED相关的函数和变量。让我解释一下:

  1. #ifndef __LED_H 和 #define __LED_H:这是头文件保护措施,确保在同一编译单元中只包含一次该头文件内容,防止重复定义。

  2. void LED1_Init(void);:这是LED1初始化函数的声明,告诉编译器该函数的存在和接口。

  3. #endif:结束头文件的定义。

        这个头文件的作用是在其他源文件中包含它后,可以调用LED1_Init函数进行LED的初始化。

#ifndef __LED_H
#define __LED_Hvoid LED1_Init(void);#endif

        LED1.cpp文件:这段代码是用于在STM32F10x系列单片机上初始化一个LED(Light Emitting Diode)的函数。详细解释如下:

  1. #include "stm32f10x.h":这行代码包含了STM32F10x系列的设备头文件,其中包含了该系列单片机的寄存器定义和常量声明等信息。

  2. void LED1_Init(void):这是一个无返回值的函数,用于初始化LED。

  3. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);:这行代码用于使能GPIOA的时钟。在STM32中,访问GPIO需要先使能相应的时钟。

  4. GPIO_InitTypeDef GPIO_InitStructure;:定义了一个结构体变量GPIO_InitStructure,用于配置GPIO初始化参数。

  5. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;:将GPIOA的引脚1配置为推挽输出模式。在这种模式下,GPIO引脚可以提供高电平和低电平输出。

  6. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;:选择了GPIOA的引脚1作为LED连接的引脚。

  7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;:配置了GPIO的输出速度为50MHz。

  8. GPIO_Init(GPIOA, &GPIO_InitStructure);:根据上述配置初始化GPIOA的引脚1。

  9. 在注释中提到了两种驱动方式:

    • GPIO_ResetBits(GPIOA, GPIO_Pin_1);:将GPIOA的引脚1输出低电平,LED熄灭。
    • GPIO_SetBits(GPIOA, GPIO_Pin_1);:将GPIOA的引脚1输出高电平,LED点亮。

        这段代码的作用是初始化一个LED连接的GPIO引脚,配置为推挽输出模式,并设置输出速度为50MHz。

#include "stm32f10x.h"                  // Device headervoid LED1_Init(void)
{// 1、开启时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);// 2、调用Init函数// 2-1、需要先进行结构体的定义GPIO_InitTypeDef GPIO_InitStructure;// 数据信号的推挽输出,这个时候STM32对高低电平拥有绝对的控制权,此时LED灯长脚插在PA0口,短脚插在负极,高电平驱动也可以闪烁GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 变成了OD就成了开漏模式,就无法高电平驱动了GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 ;  // 选择Pin_0是因为用的是GPIOA的0号引脚GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  // 输出速度GPIO_Init(GPIOA,&GPIO_InitStructure);// 3、设置高电平,LED灯熄灭//GPIO_ResetBits(GPIOA,GPIO_Pin_1);//GPIO_SetBits(GPIOA,GPIO_Pin_2);
}

02-LED灯2实现

       LED灯2的实现如下:

        LED2.h文件

        这段.h文件是LED2模块的头文件,用于声明LED2相关的函数和变量。解释如下:

  1. #ifndef __LED2_H 和 #define __LED2_H:这是头文件保护措施,确保在同一编译单元中只包含一次该头文件内容,防止重复定义。

  2. void LED2_Init(void);:这是LED2初始化函数的声明,告诉编译器该函数的存在和接口。

  3. #endif:结束头文件的定义。

        这个头文件的作用是在其他源文件中包含它后,可以调用LED2_Init函数进行LED2的初始化。

#ifndef __LED2_H
#define __LED2_Hvoid LED2_Init(void);#endif

        LED2.cpp文件:这段代码是用于在STM32F10x系列单片机上初始化另一个LED的函数。解释如下:

  1. #include "stm32f10x.h":同样是包含了STM32F10x系列的设备头文件,以便使用相关的寄存器定义和常量声明。

  2. void LED2_Init(void):这是另一个无返回值的函数,用于初始化第二个LED。

  3. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);:这行代码用于使能GPIOB的时钟,因为第二个LED连接在GPIOB上。

  4. GPIO_InitTypeDef GPIO_InitStructure;:定义了一个新的结构体变量GPIO_InitStructure,用于配置GPIOB的初始化参数。

  5. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;:同样将GPIOB的引脚1配置为推挽输出模式。

  6. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;:选择了GPIOB的引脚1作为第二个LED连接的引脚。

  7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;:配置了GPIO的输出速度为50MHz。

  8. GPIO_Init(GPIOB, &GPIO_InitStructure);:根据上述配置初始化GPIOB的引脚1。

        这段代码的作用与之前的LED1初始化函数类似,是初始化另一个LED连接的GPIO引脚,配置为推挽输出模式,并设置输出速度为50MHz。

#include "stm32f10x.h"                  // Device headervoid LED2_Init(void)
{// 1、开启时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);// 2、调用Init函数// 2-1、需要先进行结构体的定义GPIO_InitTypeDef GPIO_InitStructure;// 数据信号的推挽输出,这个时候STM32对高低电平拥有绝对的控制权,此时LED灯长脚插在PA0口,短脚插在负极,高电平驱动也可以闪烁GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 变成了OD就成了开漏模式,就无法高电平驱动了GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 ;  // 选择Pin_0是因为用的是GPIOA的0号引脚GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  // 输出速度GPIO_Init(GPIOB,&GPIO_InitStructure);
}

03-延时函数实现

       Delay的实现如下:

        Delay.h文件

        这个.h文件定义了三个延时函数的声明,分别是Delay_usDelay_msDelay_s,用于提供微秒级、毫秒级和秒级的延时功能。这些声明可以让其他源文件包含这个头文件后直接调用这些函数,而不需要知道函数的具体实现细节。同时,文件开头使用了#ifndef#define宏,以及#endif来实现头文件保护,确保在同一编译单元中只包含一次该头文件内容,防止重复定义。

#ifndef __DELAY_H
#define __DELAY_Hvoid Delay_us(uint32_t us);  // 微秒延时
void Delay_ms(uint32_t ms);  // 毫秒延时
void Delay_s(uint32_t s);    // 秒延时#endif

        Delay.cpp文件:这段代码提供了三个延时函数:Delay_usDelay_msDelay_s,分别用于提供微秒级、毫秒级和秒级的延时。下面分别解释这三个函数:

  1. void Delay_us(uint32_t xus):这个函数用于提供微秒级的延时。它使用了STM32的系统滴答(SysTick)定时器来实现延时。xus参数是要延时的微秒数,通过乘以72(STM32的系统时钟频率,HCLK,假设为72MHz)来计算出SysTick定时器的重装载值。然后设置SysTick定时器的时钟源为HCLK,启动定时器,等待定时器计数到0,最后关闭定时器。

  2. void Delay_ms(uint32_t xms):这个函数用于提供毫秒级的延时。它通过调用Delay_us函数来实现,每次调用Delay_us函数延时1000微秒,即1毫秒,通过xms参数指定的次数来控制总的延时毫秒数。

  3. void Delay_s(uint32_t xs):这个函数用于提供秒级的延时。它通过调用Delay_ms函数来实现,每次调用Delay_ms函数延时1000毫秒,即1秒,通过xs参数指定的次数来控制总的延时秒数。

        这三个延时函数都可以在STM32的开发中用于控制程序的执行流程,实现特定的延时效果。

#include "stm32f10x.h"/*** @brief  微秒级延时* @param  xus 延时时长,范围:0~233015* @retval 无*/
void Delay_us(uint32_t xus)
{SysTick->LOAD = 72 * xus;				//设置定时器重装值SysTick->VAL = 0x00;					//清空当前计数值SysTick->CTRL = 0x00000005;				//设置时钟源为HCLK,启动定时器while(!(SysTick->CTRL & 0x00010000));	//等待计数到0SysTick->CTRL = 0x00000004;				//关闭定时器
}/*** @brief  毫秒级延时* @param  xms 延时时长,范围:0~4294967295* @retval 无*/
void Delay_ms(uint32_t xms)
{while(xms--){Delay_us(1000);}
}/*** @brief  秒级延时* @param  xs 延时时长,范围:0~4294967295* @retval 无*/
void Delay_s(uint32_t xs)
{while(xs--){Delay_ms(1000);}
} 

04-主函数实现

       主函数实现代码如下:

        这段主函数代码主要完成了以下几个任务:

  1. 包含了必要的头文件,如STM32F10x系列的设备头文件、延时函数头文件、LED1和LED2的头文件。

  2. 在main函数中调用了LED1_Init和LED2_Init函数,分别初始化了两个LED的引脚。

  3. 进入一个无限循环(while(1)),在循环中实现了LED1和LED2的闪烁效果:

    a. 首先点亮LED1,延时1000ms,然后熄灭LED1,延时1000ms,实现LED1每秒闪烁一次的效果。

    b. 接着点亮LED2,延时500ms,然后熄灭LED2,延时500ms,实现LED2每0.5秒闪烁一次的效果。

        这样,主函数完成了对两个LED灯的初始化和控制,使它们交替闪烁。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "LED.h"
#include "LED2.h"int main(void){LED1_Init();LED2_Init();// 4、设置低电平,LED灯亮起
//	GPIO_ResetBits(GPIOA,GPIO_Pin_1);// 5、也可以GPIO_WriteBit()函数设置高低电平// 前两个参数和Set和Reset一样,第三个参数用于清除端口值,和设置端口值// 如果参数=Bit_RESET,清除端口值,设置为低电平,灯亮;反之参数=Bit_SET,为高电平,灯灭
//	GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_SET);// 6、若是需要实现LED灯闪烁的命令,就需要在While死循环中进行一些设置while(1){// 点亮 两个函数都可以
//		GPIO_ResetBits(GPIOA,GPIO_Pin_0);
//		Delay_ms(500);  // 延时函数直接调用即可
//	    GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_RESET);
//		GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)0);  // 0为低电平// 7、这里加延时函数
//		Delay_ms(500);// 熄灭 
//		GPIO_SetBits(GPIOA,GPIO_Pin_0);
//		Delay_ms(500);
//	    GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_SET); 如果这里想要直接使用自己定义的参数代替第三个参数,
//		GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)1);  // 1为高电平//  (BitAction)0 需要加//	    Delay_ms(500);GPIO_SetBits(GPIOA,GPIO_Pin_1);Delay_ms(1000);GPIO_ResetBits(GPIOA,GPIO_Pin_1);Delay_ms(1000);GPIO_SetBits(GPIOB,GPIO_Pin_1);Delay_ms(500);GPIO_ResetBits(GPIOB,GPIO_Pin_1);Delay_ms(500);}}

总结

       实现LED灯闪烁的核心在于控制GPIO引脚的高低电平状态和添加适当的延时。在STM32上,通过操作寄存器来控制GPIO引脚状态,然后利用延时函数来控制LED的亮灭间隔。

总结如下步骤:

  1. 包含必要的头文件,如STM32的设备头文件和延时函数头文件。

  2. 初始化LED的GPIO引脚,可以通过调用初始化函数实现。

  3. 进入一个无限循环,通常使用while(1)

  4. 在循环中,通过操作GPIO引脚的寄存器,设置LED引脚的状态,从而控制LED的亮灭。

  5. 在LED状态改变后,添加适当的延时,以控制LED的亮灭间隔。

  6. 循环执行步骤4和步骤5,实现LED的闪烁效果。

        这样,通过简单的C语言代码,就可以在STM32上实现LED的闪烁功能。

这篇关于【STM32单片机】----实现LED灯闪烁实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005322

相关文章

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境