【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表

本文主要是介绍【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求
将Oracle中的业务基础表增量数据导入Hive中,与当前的全量表合并为最新的全量表。

***欢迎转载,请注明来源***   
http://blog.csdn.net/u010967382/article/details/38735381

设计
涉及的三张表:
  • 全量表保存了截止上一次同步时间的全量基础数据表
  • 增量表:增量临时表
  • 更新后的全量表:更新后的全量数据表

步骤:
  1. 通过Sqoop将Oracle中的表导入Hive,模拟全量表和增量表
  2. 通过Hive将“全量表+增量表”合并为“更新后的全量表”,覆盖当前的全量表

步骤1: 通过Sqoop将Oracle中表的导入Hive,模拟全量表和增量表
为了模拟场景,需要一张全量表,和一张增量表,由于数据源有限,所以两个表都来自Oracle中的OMP_SERVICE,全量表包含所有数据,在Hive中名称叫service_all,增量表包含部分时间段数据,在Hive中名称叫service_tmp。

(1)全量表导入:导出所有数据,只要部分字段,导入到Hive指定表里
为实现导入Hive功能,需要先配置HCatalog(HCatalog是Hive子模块)的环境变量,/etc/profile中新增:
export HCAT_HOME=/home/fulong/Hive/apache-hive-0.13.1-bin/hcatalog

执行以下命令导入数据:
fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \
> --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \
> --table OMP_SERVICE \
> --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \
> --hive-import --hive-table SERVICE_ALL

注意:用户名必须大写

(2)增量表导入:只导出所需时间范围内的数据,只要部分字段,导入到Hive指定表里
使用以下命令导入数据:
fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \
> --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \
> --table OMP_SERVICE \
> --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \
> --where "CREATE_TIME > to_date('2012/12/4 17:00:00','yyyy-mm-dd hh24:mi:ss') and CREATE_TIME < to_date('2012/12/4 18:00:00','yyyy-mm-dd hh24:mi:ss')" \
> --hive-import --hive-overwrite --hive-table SERVICE_TMP

注意:
  1. 由于使用了--hive-overwrite参数,所以该语句可反复执行,往service_tmp表中覆盖插入最新的增量数据;
  2. Sqoop还支持使用复杂Sql语句查询数据导入,相亲参见http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html的“7.2.3.Free-form Query Imports”章节

(3)验证导入结果:列出所有表,统计行数,查看表结构
hive>  show tables;
OK
searchlog
searchlog_tmp
service_all
service_tmp
Time taken: 0.04 seconds, Fetched: 4 row(s)
hive>  select count(*) from service_all;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1407233914535_0013, Tracking URL = http://FBI003:8088/proxy/application_1407233914535_0013/
Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0013
Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1
2014-08-21 16:51:47,389 Stage-1 map = 0%,  reduce = 0%
2014-08-21 16:51:59,816 Stage-1 map = 33%,  reduce = 0%, Cumulative CPU 1.36 sec
2014-08-21 16:52:01,996 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.45 sec
2014-08-21 16:52:07,877 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.96 sec
2014-08-21 16:52:17,639 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.29 sec
MapReduce Total cumulative CPU time: 5 seconds 290 msec
Ended Job = job_1407233914535_0013
MapReduce Jobs Launched:
Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.46 sec   HDFS Read: 687141 HDFS Write: 5 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 460 msec
OK
6803
Time taken: 59.386 seconds, Fetched: 1 row(s)
hive>  select count(*) from service_tmp;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1407233914535_0014, Tracking URL = http://FBI003:8088/proxy/application_1407233914535_0014/
Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0014
Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1
2014-08-21 16:53:03,951 Stage-1 map = 0%,  reduce = 0%
2014-08-21 16:53:15,189 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.17 sec
2014-08-21 16:53:16,236 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.38 sec
2014-08-21 16:53:57,935 Stage-1 map = 100%,  reduce = 22%, Cumulative CPU 3.78 sec
2014-08-21 16:54:01,811 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.34 sec
MapReduce Total cumulative CPU time: 5 seconds 340 msec
Ended Job = job_1407233914535_0014
MapReduce Jobs Launched:
Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.66 sec   HDFS Read: 4720 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 660 msec
OK
13
Time taken: 75.856 seconds, Fetched: 1 row(s)
hive>  describe service_all;
OK
service_code            string
service_name            string
service_process         string
create_time             string
enable_org              string
enable_platform         string
if_del                  string
Time taken: 0.169 seconds, Fetched: 7 row(s)
hive>  describe service_tmp;
OK
service_code            string
service_name            string
service_process         string
create_time             string
enable_org              string
enable_platform         string
if_del                  string
Time taken: 0.117 seconds, Fetched: 7 row(s)

步骤2:通过Hive将“全量表+增量表”合并为“更新后的全量表”,覆盖当前的全量表

合并新表的逻辑如下:
  • 整个tmp表进入最终表中
  • all表的数据中不包含在tmp表service_code范围内的数据全部进入新表
执行以下sql语句可以合并得到更新后的全量表:
hive> select * from service_tmp  union all  select a.* from service_all a left outer join service_tmp b on a.service_code = b.service_code where b.service_code is null;

我们需要直接将查询结果更新回全量表中:
hive> insert overwrite table service_all select * from service_tmp union all select a.* from service_all a left outer join service_tmp b on a.service_code = b.service_code where b.service_code is null;

注意,将查询结果插入表有以下两类语法:
  • INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
  • INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
INSERT OVERWRITE 将会覆盖现有数据,由于当前场景需要更新全量表,所以使用了覆盖模式;
INSERT INTO 不会覆盖现有数据,是追加数据

到此为止,Hive中的service_all表已经更新为最新的数据!
在真实场景中,需要结合shell+cron实现该过程的定时执行。

这篇关于【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004661

相关文章

Qt把文件夹从A移动到B的实现示例

《Qt把文件夹从A移动到B的实现示例》本文主要介绍了Qt把文件夹从A移动到B的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录如何移动一个文件? 如何移动文件夹(包含里面的全部内容):如何删除文件夹:QT 文件复制,移动(

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

使用mvn deploy命令上传jar包的实现

《使用mvndeploy命令上传jar包的实现》本文介绍了使用mvndeploy:deploy-file命令将本地仓库中的JAR包重新发布到Maven私服,文中通过示例代码介绍的非常详细,对大家的学... 目录一、背景二、环境三、配置nexus上传账号四、执行deploy命令上传包1. 首先需要把本地仓中要

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Linux下修改hostname的三种实现方式

《Linux下修改hostname的三种实现方式》:本文主要介绍Linux下修改hostname的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下修改ho编程stname三种方式方法1:修改配置文件方法2:hFvEWEostnamectl命