一篇文章讲透排序算法之希尔排序

2024-05-26 02:36

本文主要是介绍一篇文章讲透排序算法之希尔排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

希尔排序是对插入排序的优化,如果你不了解插入排序的话,可以先阅读这篇文章:插入排序

目录

1.插入排序的问题

2.希尔排序的思路

3.希尔排序的实现

4.希尔排序的优化

5.希尔排序的时间复杂度


1.插入排序的问题

如果用插入排序对一个逆序有序的数组排序时,时间复杂度为O(n^2),此时效率最低。

如果用插入排序对一个顺序有序的数组排序时,时间复杂度为O(n),此时效率最高。

我们发现,被排序的对象越接近有序,插入排序的效率越高,这时希尔就有了一个想法:如果可以将数组变得接近有序后再用插入排序呢?

2.希尔排序的思路

希尔排序是对插入排序的优化,它的思路是先选定一个整数作为增量,这里我们以gap(间隔)表示,将间隔为gap的数据分为一组,这样就可以分出gap组以gap为公差的等差数列的数据组。之后将这些数据组排序(把每组数据排序),之后将gap缩小,继续分组并进行排序,重复上述动作,直到gap缩小至1,此时排完了之后刚好有序。

为了让数组更接近有序的排序称为预排序,而最后一次排序是直接插入排序,而由于前面的操作使数据变得接近有序,因此最后一次直接插入排序需要移动的数据很少,效率便很高了。

下面我们来实现希尔排序。

现在我们给定如下数组,并以3为gap,可将数组根据颜色分为3组以3为公差的等差数列。

之后我们对这三组数据进行插入排序

之后我们将间隔缩小, 以2为间隔,我们就可以分出两组以2为公差的等差数列。

这里也并不一定要只减少1,减少多少看我们想减少多少。

现在我们完成第二次排序

现在我们的数组已经非常接近有序,我们最后再以1为间隔,得到一组以1为间隔的等差数列,再完成最后一次排序,也就是直接插入排序,即可使得我们的数组有序。

3.希尔排序的实现

现在我们根据我们的思路来逐步实现希尔排序

第一步:以3为间隔,排序第一组绿色的

在已经学习了插入排序的基础上,我们来实现一下排序绿色

//代码中的n代表数组长度,后面的代码不再解释。
int gap = 3;
//n-gap后的数据为最后一组数据,而当i等于我们的前一组数据时
//排序的就是最后一组数据,因此结束条件为i<n-gap
for (int i = 0; i < n - gap; i += gap)
{int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;
}

第二步:进行第一次排序  

由于我们先前已经实现了排序绿色的,而排序蓝色的和排序黄色的不过是起始位置不同,因此我们再嵌套一层循环即可。

for (int j = 0; i < gap; j++)
{int gap = 3;//n-gap后的数据为最后一组数据,而当i等于我们的前一组数据时//排序的就是最后一组数据,因此结束条件为i<n-gapfor (int i = j; i < n - gap; i += gap){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}
}

现在我们已经完成了第一次排序,那么后面的排序我们控制gap即可

for (int gap = 3; gap > 0; gap--)
{for (int j = 0; i < gap; j++){for (int i = j; i < n - gap; i += gap){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

这时我们发现我们的代码达到了惊人的四层循环...这段代码未免有些过于恐怖...

那我们有没有什么办法优化这段代码呢? 

4.希尔排序的优化

这时有一位大佬给出了这么一个解决方法:

我们不再一次比较一个数据组,

而是先比较第一个数据组的第一个数据和第二个数据,

然后比较第二个数据组的第一个数据和第二个数据,

之后比较第三个数据组的第一个数据和第二个数据,

然后比较第二个数据组的第二个数据和第三个数据,

这么一直比较下去,就可以完成我们第一次预排序的效果。

如下图所示,相同颜色的线表示比较的数据。

代码如下所示: 

int gap = 3
for (int i = 0; i < n - gap; i++)
{int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;
}

现在我们已经完成了第一趟的排序,接下来我们控制gap即可。

int gap = 3;
while (gap > 0)
{for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}gap--;
}

现在这段代码看起来就舒服多了。但是我们的gap就一定每次都减1吗?

我们之前说过,预排序是为了让数组更加有序,我们只要能够让数组更加有序就可以了,没有必要每次让gap减1,gap太大了反而会有一些副作用。

这时有一位大佬写了这么一个希尔排序: 

int gap = n;
while (gap > 0)
{gap /= 2;for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}
}

这里的第一趟循环以二分之数组长度为间隔,后续的循环每次都除以2。

到了最后一次循环之时,gap要么等于2,要么等于3;而它们除2都等于1。这样就保证了最后一次循环是直接插入排序,可谓是相当完美了。

现在我们将其封装在函数体内,完成最终版的希尔排序

void InsertSort(int* a, int n)
{int gap = n;while (gap > 0){gap /= 2;for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

5.希尔排序的时间复杂度

我们发现我们最终版的希尔排序也拥有三层循环,于是乎我们大家就对希尔排序的效率产生了疑问.但是利用我们现有数学能力无法计算出希尔排序的时间复杂度,只能给出一个大致范围

下面给出严蔚敏教授数据结构书中的相关论述:

在这里也可以给大家大概画一下图,由于每次排序都会对后续的排序产生影响,因此我们后续的排序移动的数据会越来越少,因此效率还是比较高的。 

这篇关于一篇文章讲透排序算法之希尔排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003313

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO