Opencompass模型评测教程

2024-05-26 01:20

本文主要是介绍Opencompass模型评测教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型评测

模型评测非常关键,目前主流的方法主要可以概括为主观评测和客观评测,主观评测又可以分为两种形式:人工判断或者和模型竞技场。客观评测一般采用评测数据集的形式进行模型评测。本教程使用Opencompass工具进行对Internlm2-7b模型进行评测。

算力平台

本教程在OpenBayes上进行实验,主要的原因在于Openbayes平台可以很方便地使用自定义的数据集。没有注册的用户可以使用我的邀请链接,可以额外获得RTX4090的免费使用时长:

https://openbayes.com/console/signup?r=xiaoshulin_WGv4

硬件环境

首先Opencompass比较消耗资源,一张4090评测一次CMMLU评测集大概需要一个小时,并且选择A100速度也是差不多的(主要还是CPU瓶颈和推理能力),建议选择单张4090进行评测,性价比最高。

下载Opencompass评测数据包

opencompass的数据包分为了两个版本,一个是complete版本和core版本,其中complete版本包含的数据集种类更加全面,core版本包含了主要的核心评测数据集。由于本教程评测使用CMMLU数据集,所以只需要下载core版本即可。
下载方式可以使用官方的办法:

# 下载数据集到 data/ 处
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip

但是经过本人测试,下载速度非常有限,所以可以使用我下面的链接:opencompass包阿里云
同时,强烈建议将数据集上传到openBayes平台给用户挂载的数据集文件夹。
1、首先创建一个数据集:
在这里插入图片描述
我这里命名为opencompass评测数据集
在这里插入图片描述
然后需要创建一个新的版本(openBayes的管理和github很像,无论是模型还是数据集都是有版本一说,这样子的话可以方便管理数据集的不同版本,这也是非常nice的一点):
在这里插入图片描述
然后在对应的版本里面上传需要的数据集即可。
在这里插入图片描述

配置硬件环境

本教程使用RTX4090进行模型的评测。但是首先我们需要创建一个算力容器。
在这里插入图片描述
我这里命名为书生浦语模型评测,注意在创建数据集的时候需要设置好两个:internlm2-7b模型和你刚才创建的opencompass数据包,这样子的话就根本不需要额外在容器内部下载,白白浪费时间。
在这里插入图片描述
在这里插入图片描述
然后到了下一步选择算力,我们选择使用RTX4090加速,并且使用pytorch中的python3.10+cuda12.1环境镜像:
在这里插入图片描述
剩下的就是点击审核和执行就可以了。

软件环境配置

这一步,首先打开JupyterLab的工作空间。
在这里插入图片描述
观察这个界面,我们就可以发现到我们刚刚挂载的那个评测数据集和评测的模型(实际上就是两个文件夹)。
在这里插入图片描述
由于每一次启动openbayes平台都会将base的conda环境的软件依赖全部清理掉,所以最好的方法是使用conda创建一个全新的虚拟环境保存到路径/openbayes/home下面,这个文件夹的所有内容不会被删除。首先创建一个终端,确保在home路径下面,然后执行下面的脚本:

conda create --prefix /openbayes/home/opss python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate /openbayes/home/opss
git clone https://github.com/open-compass/opencompass.git
cd opencompass
pip install -e .

由于可能发生缺失文件libGL.so.1,所以需要安装软件依赖:

apt install libgl1-mesa-glx -y

最后我们进入opencompass的目录下面,可以得到下面的结构目录:
在这里插入图片描述

opencompass使用

参考文档

官方最新的opencompass使用文档

执行opencompass评测任务

首先需要创建一个data文件夹,存储的就是我们刚刚放上去的opencompass评测集。
在这里插入图片描述
然后在将我们的评测数据集复制一份到这个data文件夹里面:

cp -r /openbayes/input/input0/data/* ./data

在这里插入图片描述
opencompass的工作原理可以参考文档,也可以参考这个文章:关于openCompass与大模型评测现状的分析
用起来的实际上并不需要特别深入的理解,只需要明白每一步要要干啥就OK了。执行opencompass的一个关键是调整评测集的config,常用的评测数据集的配置文件都在opencompass/configs这个路径下面了。
首先创建一个配置文件eval_internlm2_7b.py放到configs文件夹下面:

from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_basewith read_base():from .datasets.cmmlu.cmmlu_ppl import cmmlu_datasetsdatasets = [*cmmlu_datasets]models = [dict(type=HuggingFaceCausalLM,abbr='internlm2-7b',path="/openbayes/input/input1/internlm2-7b",  # 模型文件路径tokenizer_path='/openbayes/input/input1/internlm2-7b',tokenizer_kwargs=dict(trust_remote_code=True,use_fast=False,),max_seq_len=2048,batch_size=1,model_kwargs=dict(device_map='auto', trust_remote_code=True),run_cfg=dict(num_gpus=1, num_procs=1),) # 多模型评测最好放到一起,因为可以开很多个进程一起评测
]

然后在终端执行命令:

MKL_SERVICE_FORCE_INTEL=1 python run.py configs/eval_internlm2_7b.py

输出会保存到文件opencompass/outputs文件夹里面:
在这里插入图片描述

这篇关于Opencompass模型评测教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003165

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU