本文主要是介绍29. 相似矩阵,若尔当型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 1. 相似矩阵
- 2. 相似矩阵
- 2.1 举例
- 2.2 证明相似矩阵具有相同特征值
1. 相似矩阵
假设矩阵A,B为正定矩阵,那么对于任意非零列向量x来说,二次型 x T A x , x T B x x^TAx,x^TBx xTAx,xTBx恒为正
x T A x > 0 , x T B x > 0 , \begin{equation} x^TAx>0,x^TBx>0, \end{equation} xTAx>0,xTBx>0,
- 如果A,B均是正定矩阵,那么A+B也是正定矩阵
x T ( A + B ) x = ( x T A + x T B ) x = x T A x + x T B x > 0 \begin{equation} x^T(A+B)x=(x^TA+x^TB)x=x^TAx+x^TBx>0 \end{equation} xT(A+B)x=(xTA+xTB)x=xTAx+xTBx>0
我们在做最小二乘法的过程中,需要拟合一条直线,满足直线基本能反映点的情况,我们知道b值不一定在A的列空间中,所以我们通过同时乘以 A T A^T AT 得到 A T b A^Tb ATb,使得方程能求得最优解 x ^ \hat{x} x^
A T A x ^ = A T b \begin{equation} A^TA\hat{x}=A^Tb \end{equation} ATAx^=ATb
这时候我们就遇到了 A T A A^TA ATA矩阵,那么这个矩阵肯定是对称矩阵,请问 A T A A^TA ATA 是否是正定矩阵呢?
1.1 A T A A^TA ATA正定性证明
首先 A T A A^TA ATA是对称的,那么我们只需要证明对于任意非零向量x,二次型恒正即可:
x T A T A x > ? ? ? 0 \begin{equation} x^TA^TAx>???0 \end{equation} xTATAx>???0
- 整理上述公式可得:
( x T A T ) ( A x ) = ( A x ) T ( A x ) \begin{equation} (x^TA^T)(Ax)=(Ax)^T(Ax) \end{equation} (xTAT)(Ax)=(Ax)T(Ax) - 我们知道Ax表示的是A列向量的组合,最后还是一个列向量,所以上述值都是一个标量的平方,所以可以得到如下:
( x T A T ) ( A x ) = ( A x ) T ( A x ) = ∣ ∣ A x ∣ ∣ 2 ≥ 0 \begin{equation} (x^TA^T)(Ax)=(Ax)^T(Ax)=||Ax||^2 \ge 0 \end{equation} (xTAT)(Ax)=(Ax)T(Ax)=∣∣Ax∣∣2≥0 - 那么什么时候 ∣ ∣ A x ∣ ∣ ≠ 0 ||Ax|| \neq0 ∣∣Ax∣∣=0呢?也就是当Ax=0无零解,也就是说矩阵A的秩等于列数n,所以可以得到,只要给定一个m行n列的矩阵A,如果矩阵A的秩为n,即满列秩,那么就可以得到 A T A A^TA ATA为正定矩阵!!!
2. 相似矩阵
假设A,B均是N×N的矩阵,如果存在一个可以矩阵M,使得三个矩阵满足如下关系,那么A相似于B
B = M − 1 A M \begin{equation} B=M^{-1}AM \end{equation} B=M−1AM
特征向量矩阵S,当我们有一个矩阵A,其特征值矩阵为 Λ \Lambda Λ,特征向量矩阵为S,满足如下条件:
Λ = S − 1 A S ⇒ A ∼ Λ \begin{equation} \Lambda=S^{-1}AS \Rightarrow A \sim \Lambda \end{equation} Λ=S−1AS⇒A∼Λ
- 按照新的说法来说,矩阵A相似于特征向量 Λ \Lambda Λ,也就是说当矩阵M是特征向量矩阵S时候,矩阵A相似于特征值矩阵 Λ \Lambda Λ,如果 M ≠ S M \ne S M=S,那么矩阵A相似于其他的。
B = M − 1 A M ⇒ { A ∼ Λ , M = S A ∼ B , M ≠ S \begin{equation} B=M^{-1}AM \Rightarrow \left\{ \begin{aligned} A \sim \Lambda,M=S\\ A \sim B,M\neq S\\ \end{aligned} \right.\end{equation} B=M−1AM⇒{A∼Λ,M=SA∼B,M=S
2.1 举例
当我们矩阵A表示如下,可以得到其特征向量矩阵S,特征值矩阵 Λ \Lambda Λ
A = [ 2 1 1 2 ] ⇒ S = [ 1 1 − 1 1 ] , Λ = [ 1 0 0 3 ] ⇒ A ∼ Λ \begin{equation} A=\begin{bmatrix} 2&1\\\\ 1&2 \end{bmatrix}\Rightarrow S=\begin{bmatrix} 1&1\\\\ -1&1 \end{bmatrix},\Lambda=\begin{bmatrix} 1&0\\\\ 0&3 \end{bmatrix}\Rightarrow A \sim \Lambda \end{equation} A= 2112 ⇒S= 1−111 ,Λ= 1003 ⇒A∼Λ
- 给定一个矩阵M,可得如下B
A = [ 2 1 1 2 ] ⇒ M = [ 1 4 0 1 ] , B = M − 1 A M = [ − 2 − 15 1 6 ] ⇒ A ∼ B \begin{equation} A=\begin{bmatrix} 2&1\\\\ 1&2 \end{bmatrix}\Rightarrow M=\begin{bmatrix} 1&4\\\\ 0&1 \end{bmatrix},B=M^{-1}AM=\begin{bmatrix} -2&-15\\\\ 1&6 \end{bmatrix}\Rightarrow A \sim B \end{equation} A= 2112 ⇒M= 1041 ,B=M−1AM= −21−156 ⇒A∼B - 矩阵A,B, Λ \Lambda Λ之间有什么关系呢?
∣ ∣ A ∣ ∣ = 3 , λ A 1 = 1 ; λ A 2 = 3 ; t r a c e A = 4 \begin{equation} ||A||=3,\lambda_{A1}=1;\lambda_{A2}=3;trace_A=4 \end{equation} ∣∣A∣∣=3,λA1=1;λA2=3;traceA=4
∣ ∣ B ∣ ∣ = 3 , λ B 1 = 1 ; λ B 2 = 3 ; t r a c e B = 4 \begin{equation} ||B||=3,\lambda_{B1}=1;\lambda_{B2}=3;trace_B=4 \end{equation} ∣∣B∣∣=3,λB1=1;λB2=3;traceB=4
1、两者的秩相等。 2、两者的行列式值相等。 3、两者的迹数相等。 4、两者拥有同样的特征值,尽管相应的特征向量一般不同
2.2 证明相似矩阵具有相同特征值
B = M − 1 A M , A x = λ x \begin{equation} B=M^{-1}AM,Ax=\lambda x \end{equation} B=M−1AM,Ax=λx
M B M − 1 = A ⇒ M B M − 1 x = A x = λ x ⇒ B [ M − 1 x ] = λ [ M − 1 x ] \begin{equation} MBM^{-1}=A\Rightarrow MBM^{-1}x=Ax=\lambda x \Rightarrow B[M^{-1}x]=\lambda [M^{-1}x] \end{equation} MBM−1=A⇒MBM−1x=Ax=λx⇒B[M−1x]=λ[M−1x]
- 故可以得到,如果矩阵A相似于矩阵B,那么A,B具有相同的特征值矩阵。
这篇关于29. 相似矩阵,若尔当型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!