【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用

2024-05-26 00:12

本文主要是介绍【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

LM-Studio​编辑

那么问题来了,为什么我要在本地部署大模型?

隐私性:

定制性:

成本和体验的优化:

工具功能特点和使用方式介绍:

首页提供搜索功能和一些模型的推荐

模型下载管理:

聊天界面:​编辑

模型偏好设置

使用速度体验:


前言

不需要配置环境,不需要部署,不需要自己找模型。小白也可以打开即用的本地大模型使用工具来了,下面就谈一谈我的使用感受和心得:

LM-Studio

那么问题来了,为什么我要在本地部署大模型?

个人使用下来,最吸引我的有这三点:

  1. 隐私性

网络大模型你的输入都是要上传的云端的,也就是你的隐私肯定会被大模型服务商所获得,这也是为什么那么多公司内部禁止使用网络大模型的原因。而且由于安全和审核机制,你所需要的或者发送的敏感的内容会被屏蔽。但是本地部署,数据完全由自己掌握。

  1. 定制性

目前大部分免费使用的大模型都是通用模型,就那几种,虽然可以通过提示词约束,但是内容生成大部分时候只是差强人意。本地部署,你将拥有整个开源世界的微调模型,医疗,法律,学术,动漫,感情,你即使不去定制自己的模型,也将拥有专业的各领域专家来帮你解决你能想到的大部分问题。更不必说定制自己的专属模型的可能性。

  1. 成本和体验的优化

首先承认大部分开源模型的上限是没有闭源模型高的,但是很多时候闭源模型的响应感受会受到网络,当前访问人数的限制。除非你愿意开会员,即使你愿意开会员,目前除了gpt-4o。大部门模型的响应是一个字一个字往外蹦的,尤其某些厂商做的恶心限制,离开网页就停止输出(某一言)如果你本地有一个还行的显卡,你会感受到原来大模型回答原来可以很迅速。

工具功能特点和使用方式介绍:

下载即exe,安装后即可使用,本体不到500m(提供mac和linux版本)

首页提供搜索功能和一些模型的推荐

你可以直接搜索并下载开源世界的大模型(目前看基本上huggingface,需要梯子)并下载使用,推荐模型会给出介绍。如他的来源是什么,他是多少参数的大模型,什么功能,是否经过量化处理,本地运行至少需求多少内存,占用多少硬盘空间。

模型下载管理:

注意!无论设置什么目录,模型目录必须有如下层级结构,否则会找不到模型:

聊天界面:

模型偏好设置

在聊天界面右上角有个设置功能,可以帮助我们更好的个性化使用,我会给出一些比较常用的参数设置解释

  1. 模型初始化角色配置

Preset 可以选择不同模型的初始化设置,你也可以设置自定义的模型使用配置,包括不限于,系统角色初始化提示词(system prompt),回答的随机程度,系统使用内存和显存的占比等。

  1. 模型回答内容控制:

设置模型记忆上下文长度(content length),采样温度(temperature)介于 0 和 1 之间。较高的值(如 0.7)将使输出更加随机,而较低的值(如 0.2)将使其更加集中和确定性,最大生成内容长度(tokens to generate),默认-1由大模型决定生成长度。

  1. 模型内容质量控制

Top k : 模型回复时所考虑的回复质量占总体回复的质量比例,总体来说比例越高,回答的质量越高,效果也越单一。

Repeat penalty: 模型重复惩罚,越高模型回答的内容重复性越低

CPU threads: 占用线程。经过尝试,增加占用线程对模型响应速度有少量提升,效果不明显。

  1. 显存内存使用占比:

没什么可说的,显存能撑住的情况下,拉到最大,内存的速度比显存慢多了。

使用速度体验:

2060 8g 显卡,7B Q4量化模型(基于llama3 微调的中文模型)。生成token速度为31t/s左右(比大部分网络模型响应快一倍左右),感受还是很不错的,如果完全不使用显存只使用内存,速度约5t/s 只能说能用。

kimi效果:

这个软件可以直接搜索官网mstudio.ai下载。

无法下载模型的小伙伴我也在我的公众号中打包了,我所使用的中文llama3模型(Llama3-8B-Chinese-Chat-q4_0-v2_1,和原始英文模型下载(Meta-Llama-3-8B-Instruct-Q4_K_M)已经软件的整合包下载。

后台回复 LmStudio 即可 !每天还有更多教程和AI资讯分享!

——因为热爱的AI漫谈社

这篇关于【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003010

相关文章

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超