【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用

2024-05-26 00:12

本文主要是介绍【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

LM-Studio​编辑

那么问题来了,为什么我要在本地部署大模型?

隐私性:

定制性:

成本和体验的优化:

工具功能特点和使用方式介绍:

首页提供搜索功能和一些模型的推荐

模型下载管理:

聊天界面:​编辑

模型偏好设置

使用速度体验:


前言

不需要配置环境,不需要部署,不需要自己找模型。小白也可以打开即用的本地大模型使用工具来了,下面就谈一谈我的使用感受和心得:

LM-Studio

那么问题来了,为什么我要在本地部署大模型?

个人使用下来,最吸引我的有这三点:

  1. 隐私性

网络大模型你的输入都是要上传的云端的,也就是你的隐私肯定会被大模型服务商所获得,这也是为什么那么多公司内部禁止使用网络大模型的原因。而且由于安全和审核机制,你所需要的或者发送的敏感的内容会被屏蔽。但是本地部署,数据完全由自己掌握。

  1. 定制性

目前大部分免费使用的大模型都是通用模型,就那几种,虽然可以通过提示词约束,但是内容生成大部分时候只是差强人意。本地部署,你将拥有整个开源世界的微调模型,医疗,法律,学术,动漫,感情,你即使不去定制自己的模型,也将拥有专业的各领域专家来帮你解决你能想到的大部分问题。更不必说定制自己的专属模型的可能性。

  1. 成本和体验的优化

首先承认大部分开源模型的上限是没有闭源模型高的,但是很多时候闭源模型的响应感受会受到网络,当前访问人数的限制。除非你愿意开会员,即使你愿意开会员,目前除了gpt-4o。大部门模型的响应是一个字一个字往外蹦的,尤其某些厂商做的恶心限制,离开网页就停止输出(某一言)如果你本地有一个还行的显卡,你会感受到原来大模型回答原来可以很迅速。

工具功能特点和使用方式介绍:

下载即exe,安装后即可使用,本体不到500m(提供mac和linux版本)

首页提供搜索功能和一些模型的推荐

你可以直接搜索并下载开源世界的大模型(目前看基本上huggingface,需要梯子)并下载使用,推荐模型会给出介绍。如他的来源是什么,他是多少参数的大模型,什么功能,是否经过量化处理,本地运行至少需求多少内存,占用多少硬盘空间。

模型下载管理:

注意!无论设置什么目录,模型目录必须有如下层级结构,否则会找不到模型:

聊天界面:

模型偏好设置

在聊天界面右上角有个设置功能,可以帮助我们更好的个性化使用,我会给出一些比较常用的参数设置解释

  1. 模型初始化角色配置

Preset 可以选择不同模型的初始化设置,你也可以设置自定义的模型使用配置,包括不限于,系统角色初始化提示词(system prompt),回答的随机程度,系统使用内存和显存的占比等。

  1. 模型回答内容控制:

设置模型记忆上下文长度(content length),采样温度(temperature)介于 0 和 1 之间。较高的值(如 0.7)将使输出更加随机,而较低的值(如 0.2)将使其更加集中和确定性,最大生成内容长度(tokens to generate),默认-1由大模型决定生成长度。

  1. 模型内容质量控制

Top k : 模型回复时所考虑的回复质量占总体回复的质量比例,总体来说比例越高,回答的质量越高,效果也越单一。

Repeat penalty: 模型重复惩罚,越高模型回答的内容重复性越低

CPU threads: 占用线程。经过尝试,增加占用线程对模型响应速度有少量提升,效果不明显。

  1. 显存内存使用占比:

没什么可说的,显存能撑住的情况下,拉到最大,内存的速度比显存慢多了。

使用速度体验:

2060 8g 显卡,7B Q4量化模型(基于llama3 微调的中文模型)。生成token速度为31t/s左右(比大部分网络模型响应快一倍左右),感受还是很不错的,如果完全不使用显存只使用内存,速度约5t/s 只能说能用。

kimi效果:

这个软件可以直接搜索官网mstudio.ai下载。

无法下载模型的小伙伴我也在我的公众号中打包了,我所使用的中文llama3模型(Llama3-8B-Chinese-Chat-q4_0-v2_1,和原始英文模型下载(Meta-Llama-3-8B-Instruct-Q4_K_M)已经软件的整合包下载。

后台回复 LmStudio 即可 !每天还有更多教程和AI资讯分享!

——因为热爱的AI漫谈社

这篇关于【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003010

相关文章

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

CSS @media print 使用详解

《CSS@mediaprint使用详解》:本文主要介绍了CSS中的打印媒体查询@mediaprint包括基本语法、常见使用场景和代码示例,如隐藏非必要元素、调整字体和颜色、处理链接的URL显示、分页控制、调整边距和背景等,还提供了测试方法和关键注意事项,并分享了进阶技巧,详细内容请阅读本文,希望能对你有所帮助...

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

Java中Runnable和Callable的区别和联系及使用场景

《Java中Runnable和Callable的区别和联系及使用场景》Java多线程有两个重要的接口,Runnable和Callable,分别提供一个run方法和call方法,二者是有较大差异的,本文... 目录一、Runnable使用场景二、Callable的使用场景三、关于Future和FutureTa

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

Go语言中最便捷的http请求包resty的使用详解

《Go语言中最便捷的http请求包resty的使用详解》go语言虽然自身就有net/http包,但是说实话用起来没那么好用,resty包是go语言中一个非常受欢迎的http请求处理包,下面我们一起来学... 目录安装一、一个简单的get二、带查询参数三、设置请求头、body四、设置表单数据五、处理响应六、超

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.

详解如何使用Python提取视频文件中的音频

《详解如何使用Python提取视频文件中的音频》在多媒体处理中,有时我们需要从视频文件中提取音频,本文为大家整理了几种使用Python编程语言提取视频文件中的音频的方法,大家可以根据需要进行选择... 目录引言代码部分方法扩展引言在多媒体处理中,有时我们需要从视频文件中提取音频,以便进一步处理或分析。本文