深入解析力扣162题:寻找峰值(线性扫描与二分查找详解)

2024-05-25 11:44

本文主要是介绍深入解析力扣162题:寻找峰值(线性扫描与二分查找详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣!

  • 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注
    在这里插入图片描述

  • 导航

    • LeetCode解锁1000题: 打怪升级之旅:每题都包括3-5种算法,以及详细的代码实现,刷题面试跳槽必备
    • 漫画版算法详解:通过漫画的形式和动态GIF图片把复杂的算法每一步进行详细可视解读,看一遍就掌握
    • python源码解读:解读python的源代码与调用关系,快速提升代码质量
    • python数据分析可视化:企业实战案例:企业级数据分析案例与可视化,提升数据分析思维和可视化能力
    • 程序员必备的数学知识与应用:全面详细的介绍了工程师都必备的数学知识

期待与您一起探索技术、持续学习、一步步打怪升级 欢迎订阅本专栏❤️❤️

在本篇文章中,我们将详细解读力扣第162题“寻找峰值”。通过学习本篇文章,读者将掌握如何使用多种方法来解决这一问题,并了解相关的复杂度分析。每种方法都将配以详细的解释和ASCII图解,以便于理解。

问题描述

力扣第162题“寻找峰值”描述如下:

峰值元素是指其值大于左右相邻值的元素。给你一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。你可以假设 nums[-1] = nums[n] = -∞

示例 1:

输入: nums = [1,2,3,1]
输出: 2
解释: 3 是峰值元素,你的函数应该返回索引 2。

示例 2:

输入: nums = [1,2,1,3,5,6,4]
输出: 1 或 5 
解释: 你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5,其峰值元素为 6。

解题思路

  1. 初步分析
    • 峰值元素是指其值大于左右相邻值的元素。
    • 可以使用线性扫描的方法找到峰值,也可以使用二分查找来提高效率。

方法一:线性扫描

  1. 步骤
    • 遍历数组中的每个元素,检查其是否大于左右相邻的元素。
    • 返回第一个满足条件的元素索引。
代码实现
def findPeakElement(nums):for i in range(len(nums)):if (i == 0 or nums[i] > nums[i - 1]) and (i == len(nums) - 1 or nums[i] > nums[i + 1]):return ireturn -1# 测试案例
print(findPeakElement([1, 2, 3, 1]))  # 输出: 2
print(findPeakElement([1, 2, 1, 3, 5, 6, 4]))  # 输出: 1 或 5
ASCII图解

假设输入数组为 [1, 2, 3, 1],图解如下:

数组: [1, 2, 3, 1]遍历过程:
i = 0, nums[i] = 1 (不是峰值)
i = 1, nums[i] = 2 (不是峰值)
i = 2, nums[i] = 3 (是峰值)返回索引 2

方法二:二分查找

  1. 步骤
    • 使用二分查找的方法,在每次查找过程中比较中间元素与其相邻元素的大小。
    • 根据比较结果缩小查找范围,直到找到峰值元素。
代码实现
def findPeakElement(nums):left, right = 0, len(nums) - 1while left < right:mid = (left + right) // 2if nums[mid] > nums[mid + 1]:right = midelse:left = mid + 1return left# 测试案例
print(findPeakElement([1, 2, 3, 1]))  # 输出: 2
print(findPeakElement([1, 2, 1, 3, 5, 6, 4]))  # 输出: 1 或 5
ASCII图解

假设输入数组为 [1, 2, 3, 1],图解如下:

数组: [1, 2, 3, 1]初始状态: left = 0, right = 3第一次二分查找:
mid = (0 + 3) // 2 = 1
nums[mid] = 2, nums[mid + 1] = 3
nums[mid] < nums[mid + 1]
left = mid + 1 = 2第二次二分查找:
mid = (2 + 3) // 2 = 2
nums[mid] = 3, nums[mid + 1] = 1
nums[mid] > nums[mid + 1]
right = mid = 2最终状态: left = 2, right = 2返回索引 2

复杂度分析

  • 时间复杂度
    • 线性扫描法:O(n),其中 n 是数组的长度。
    • 二分查找法:O(log n),其中 n 是数组的长度。
  • 空间复杂度
    • 两种方法均为 O(1),只使用了常数空间来存储计数变量和索引。

测试案例分析

  1. 测试案例 1

    • 输入: nums = [1, 2, 3, 1]
    • 输出: 2
    • 解释: 3 是峰值元素,返回索引 2。
  2. 测试案例 2

    • 输入: nums = [1, 2, 1, 3, 5, 6, 4]
    • 输出: 15
    • 解释: 你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5,其峰值元素为 6。

总结

本文详细解读了力扣第162题“寻找峰值”,通过线性扫描法和二分查找法两种方法,高效地解决了这一问题。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

参考资料

  • 《算法导论》—— Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
  • 力扣官方题解

🌹🌹如果觉得这篇文对你有帮助的话,记得一键三连关注、赞👍🏻、收藏是对作者最大的鼓励,非常感谢 ❥(^_-)

❤️❤️关注公众号 数据分析螺丝钉 回复 学习资料 领取高价值免费学习资料❥(^_-)
在这里插入图片描述

这篇关于深入解析力扣162题:寻找峰值(线性扫描与二分查找详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001412

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl