一、背景知识 DMP作为轨迹生成方法的一种,具有诸多优势,如弹簧阻尼二阶系统保证了他可以收敛到目标点,且具有良好的时间和空间上的泛化能力。我最近一直在想为什么该系统可以保证运动轨迹收敛到目标点 g g g,后来看了码农家园的博客以及对照论文中的内容有了一定的理解,下面给出DMP算法详细的收敛性证明。 二、从微分方程的角度出发 利用本科阶段学到的高等数学知识,我们先求解一个微分方程: f ˙
NeurIPS2023 ,这是一种用于 3D 人体生成的体积基元扩散模型,可通过离体拓扑实现明确的姿势、视图和形状控制。 PrimDiffusion 对一组紧凑地代表 3D 人体的基元执行扩散和去噪过程。这种生成建模可以实现明确的姿势、视图和形状控制,并能够在明确定义的深度中对离体拓扑进行建模。此外,他们的方法可以推广到新的姿势,无需后处理,并支持下游以人为中心的任务,如 3D 纹理传输。 将
NeurIPS2023 ,这是一种用于 3D 人体生成的体积基元扩散模型,可通过离体拓扑实现明确的姿势、视图和形状控制。 PrimDiffusion 对一组紧凑地代表 3D 人体的基元执行扩散和去噪过程。这种生成建模可以实现明确的姿势、视图和形状控制,并能够在明确定义的深度中对离体拓扑进行建模。此外,他们的方法可以推广到新的姿势,无需后处理,并支持下游以人为中心的任务,如 3D 纹理传输。 将
前言 在本章中,我们将继续学习Cargo,并学习如何编写测试,如何写开发文档,以及如何用基准测试来度量代码的性能。然后,将综合利用这些技能来构建一个模拟逻辑门的crate,以亲身体验一下如何编写单元测试,集成测试,以及文档测试。 本章内容将涉及: 测试动机(Motivation on testing) 组织测试和测试原语(Organizing tests and t