when ECCV 2018 what 空间金字塔池模块或编码 - 解码器结构用于深度神经网络中解决语义分割任务。前一种网络能够通过利用多个速率和多个有效视场的过滤器或池化操作探测输入特征来编码多尺度上下文信息,而后一种网络可以通过逐渐恢复空间信息来捕获更清晰的对象边界。在这项工作中,我们建议结合两种方法的优点。具体来说,我们提出的模型DeepLabv3 +通过添加一个简单而有效的解码
在轻量化网络中,经常使用组卷积、深度卷积或是深度可分离卷积来降低FLOPs,那么三者的区别在哪里呢?下面总结一下。 一、标准卷积 下面是用一个卷积核对输入特征做一次卷积,得到的输出特征的通道为1。 二、组卷积 组卷积是将输入特征按通道分为g组,每组特征中的通道数为 C i n g \frac{C_{in}}{g} gCin,所以相应的卷积核的大小也变了,通道数变少了。每次卷积后的特征按通
Separable Self-attention for Mobile Vision Transformers Abstract 移动视觉transformer(MobileViT)可以在多个移动视觉任务中实现最先进的性能,包括分类和检测。虽然这些模型的参数较少,但与基于卷积神经网络的模型相比,它们具有较高的延迟。MobileViT的主要效率瓶颈是transformer中的多头自我注意(MH