keypoints专题

2D3D-MatchNet: Learning to Match Keypoints Across 2D Image and 3D Point Cloud

整体网络架构是这样:   基本上是堆积起来的网络,一共三条分支 1:image 2d feature 提取 2:正样本point cloud pointnet feature提取,3:负样本point cloud pointnet feature 提取 ,最后直接soft-margin triplet loss。   2d输入的是image 的patches, 3d输入的是volum

Ubuntu 18.04安装python-pcl 解决ImportError: libpcl_keypoints.so.1.7问题

问题原因 pcl与python-pcl版本不匹配,造成安装完以后运行import pcl会出现“ImportError: libpcl_keypoints.so.1.7: cannot open shared object file: No such file or directory”的错误 解决方法 我也是尝试了很多方法,最后通过编译生成最新版本的python-pcl解决 1、打开Git

Kaggle-Facial Keypoints Detection:原始数据保存为图片

python version: Python 3.6.4 如题,将原始数据“training.csv”中的图片数据保存成文件,直接上代码:   import numpy as np import pandas as pd from PIL import Image training = pd.read_csv("training.csv") training['Image'] = trai

【CV论文精读】Cornernet Detecting objects as paired keypoints

Cornernet Detecting objects as paired keypoints ECCV2018的论文 1.论文摘要 提出了CornerNet,这是一种新的目标检测方法,其中我们使用单个卷积神经网络将目标边界框检测为一对关键点,即左上角和右下角。通过将目标检测为成对的关键点,我们消除了设计先前单级检测器中常用的一组锚盒的需要。除了我们的新公式,我们引入了corner poo

同时增强多个目标:masks, bounding boxes, keypoints

参考链接: Simultaneous augmentation of multiple targets: masks, bounding boxes, keypoints - Albumentations Documentation Albumentations 可以将相同的一组变换应用于  the input image  和 all the targets 传递到transform:mas

【论文阅读笔记】:Falls Prediction Based on Body Keypoints and Seq2Seq Architecture

Falls Prediction Based on Body Keypoints and Seq2Seq Architecture 作者:Minjie Hua,Yibing Nan,Shiguo Lian 单位:CloudMinds Technologies Inc 发表信息:IN HBU 2019 (ICCV Workshop) 论文链接:https://arxiv.org/pdf/1908.

UNIPOSE: DETECTING ANY KEYPOINTS(2023.10.12)

文章目录 AbstractIntroduction现有的方法存在哪些不足基于此,我们提出了哒哒哒取得惊人的成绩Related Work MethodMULTI -MODALITY PROMPTS ENCODING(多模态提示编码)Textual Prompt Encoder(文本提示编码器)Visual Prompt Encoder CROSS-MODALITY INTERACTIVE E

CornerNet: Detecting Objects as Paired Keypoints论文详解

《CornerNet: Detecting Objects as Paired Keypoints》发表于ECCV2018 代码地址:https://github.com/princeton-vl/CornerNet 文章认为采用anchor进行目标检测的方式有两个不好的地方:第一,为了确保anchor能够尽可能的覆盖的所有的标注框,往往需要大量的anchor,而其中只有少部分是真正有效的,这

Distinctive Image Features from Scale-Invariant Keypoints (SIFT)全文翻译

pdfl链接:https://pan.baidu.com/s/1Z-HY0Pr8pn11hJqQbfPAWw 提取码:yyds Distinctive Image Features from Scale-Invariant Keypoints DavidG.Lowe Computer Science Department, University of British Columbia, Vanc

CornerNet: Detecting Objects as Paired Keypoints​

Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In Proceedings of the European conference on computer vision (ECCV) (pp. 734-750). 本文提出了一种anchor-free的检测方法,该模型所预测的是o