首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
hi3519dv500专题
Hi3519DV500 学习摘录
文章目录 一、问题1、open-vm-tools 安装2、pushd: not found3、autoreconf4、编译util-linux源码时报错 ERROR: You must have autopoint installed to 二、NFS1、服务器搭建2、u-boot常用命令3、配置4、问题 三、补缺1、make 一、问题 1、open-vm-tool
阅读更多...
海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(18)-Yolov8改进
yolov8进行二次改进后进行了量化和速度测试 ,没有明显速度增加。对比一下模型的性能。 分别用原始模型和改后的模型进行了100 epochs训练。 以下是原始模型的结果。 class P R map@0.5 map@.95 1 0.79 0.49 0.571 0.316 2 0.851 0.738 0.801 0.538 改进后的模型结果。 cla
阅读更多...
海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(7)
上一篇用MindStudio转换完om模型,就可以在板卡里进行推理验证了。 SDK里有相关推理的demo,只要om模型转换没有遇到问题,是可以做推理验证。 首先SDK里推理验证方式有两种,一个是用H264实时视频流的方式,还有一种是通过图片的方式。 H264方式需要准备好FFMPEG,通过本地视频转换成H264视频流推给板卡。用下面指令就可以。 ffmpeg的安装使用就不在这里介
阅读更多...
海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(3)
经过调试后中终于在hi3519dv500和hi3516dv500两个平台中都实现的算法验证。同时可以做自己定制的算法模型的移植了,下面是两个移植案例效果。 识别运行时间上做了对比和统计,具体的可以看下面的表格。 总体来说速度还是比较快的,Yolo系列算法实时运行是几乎没有任何问题。 训练到量化过程已经全部验证完,期待在项目中使用。 涉及到技术细
阅读更多...
海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(2)
本篇是在海思嵌入式芯片中移植yolov7和yolov8的第二篇。做一个调试的小总结。 目前手上有SS928还有Hi3516dv500两个板子,3519DV500板子还没开始调。Hi3519dv500和3516是同一套SDK,基本上是一样的,算力稍高一点,ARM主频高一点。 我们主要对yolov7和yolov8进行了从训练到量化,部署的工作。训练之前要改一下训练源码,
阅读更多...