dagscheduler专题

Spark DAGScheduler中stage转换成TaskSet的过程

Spark DAGScheduler中stage转换成TaskSet的过程 更多资源分享 github: https://github.com/opensourceteams/spark-scala-mavencsdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769 Youtube视频分析 Spa

Spark中的Driver、Executor、Stage、TaskSet、DAGScheduler等介绍

工作流程: Driver 创建 SparkSession 并将应用程序转化为执行计划,将作业划分为多个 Stage,并创建相应的 TaskSet。Driver 将 TaskSet 发送给 TaskScheduler 进行调度和执行。TaskScheduler 根据资源情况将任务分发给可用的 Executor 进程执行。Executor 加载数据并执行任务的操作,将计算结果保存在内存中。Exe

【大数据面试知识点】Spark的DAGScheduler

Spark数据本地化是在哪个阶段计算首选位置的? 先看一下DAGScheduler的注释,可以看到DAGScheduler除了Stage和Task的划分外,还做了缓存的跟踪和首选运行位置的计算。 DAGScheduler注释:  The high-level scheduling layer that implements stage-oriented scheduling. It com

Spark 源码解析 : DAGScheduler中的DAG划分与提交

一、Spark 运行架构   Spark 运行架构如下图: 各个RDD之间存在着依赖关系,这些依赖关系形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG,进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分。完成了Stage的划分,DAGScheduler基于每个Stage生成TaskSet,并将TaskSe