Spark中的Driver、Executor、Stage、TaskSet、DAGScheduler等介绍

2024-03-01 02:40

本文主要是介绍Spark中的Driver、Executor、Stage、TaskSet、DAGScheduler等介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工作流程:

  1. Driver 创建 SparkSession 并将应用程序转化为执行计划,将作业划分为多个 Stage,并创建相应的 TaskSet。
  2. Driver 将 TaskSet 发送给 TaskScheduler 进行调度和执行。
  3. TaskScheduler 根据资源情况将任务分发给可用的 Executor 进程执行。
  4. Executor 加载数据并执行任务的操作,将计算结果保存在内存中。
  5. Executor 将任务的执行结果返回给 Driver。
  6. DAGScheduler 监控任务的执行状态和依赖关系,并根据需要调整任务的执行顺序和依赖关系。
  7. TaskScheduler 监控任务的执行状态和资源分配情况,负责任务的调度和重新执行。

在 Spark 中,有多个概念和组件相互协作,以实现分布式数据处理。下面是这些概念和组件的详细说明及它们之间的工作关系:

  1. Driver(驱动器):

    • Driver 是 Spark 应用程序的主要组件,负责整个应用程序的执行和协调。
    • 它包含了应用程序的主函数,并将用户程序转化为执行计划。
    • Driver 与集群管理器通信,请求资源,并监控应用程序的执行状态。
    • 它还与 Executor 进程进行通信,发送任务并接收任务执行结果。
  2. Executor(执行器):

    • Executor 是运行在集群的工作节点上的进程,负责执行任务和计算。
    • 它由集群管理器分配给应用程序,用于并行处理数据和执行操作。
    • Executor 加载数据到内存中,并根据分配的任务执行相应的操作。
    • 它将计算结果保存在内存中,并将结果返回给 Driver。
  3. Application(应用程序):

    • 应用程序是用户编写的 Spark 代码,用于数据处理和分析。
    • 应用程序由 Driver 执行,将用户定义的操作转化为执行计划。
    • 应用程序可以包含多个 Job,并且可以跨多个阶段进行分布式计算。
  4. Job(作业):

    • Job 是应用程序中的一个独立任务单元,由用户定义的操作组成。
    • Job 定义了数据的转换和操作,可以包含多个 Stage。
  5. Stage(阶段):

    • Stage 是 Job 的子任务单位,有两种类型:Shuffle Stage 和 Result Stage。
    • Shuffle Stage 包含需要进行数据洗牌的操作,如 groupByKey、reduceByKey 等。
    • Result Stage 包含没有数据洗牌的操作,如 map、filter 等。
    • Stage 通过依赖关系构成有向无环图(DAG),描述了数据的转换和操作流程。
  6. TaskSet(任务集合):

    • TaskSet 是一个 Stage 中所有任务的集合。
    • TaskSet 中的任务是并行执行的,每个任务对应一部分数据的处理。
    • TaskSet 由 Driver 创建,并发送给 TaskScheduler 进行调度和执行。
  7. Task(任务):

    • Task 是 Spark 中最小的执行单元,对应于一个数据分区的处理。
    • 一个 Stage 中的任务数等于分区数,每个任务负责处理一个数据分区。
    • 任务在 Executor 上执行,加载数据并执行用户定义的操作。
  8. DAGScheduler(有向无环图调度器):

    • DAGScheduler 负责将应用程序转化为有向无环图(DAG)的形式。
    • 它根据任务之间的依赖关系,将 Job 划分为多个 Stage,并确定它们的执行顺序。
    • DAGScheduler 将任务发送给 TaskScheduler 进行调度和执行。
  9. TaskScheduler(任务调度器):

    • TaskScheduler 是 Spark 中的任务调度器,负责将任务分发给 Executor 进程执行。
    • 它根据资源需求和可用资源,将任务分配给合适的 Executor 进程。
    • TaskScheduler 还负责监控任务的执行状态,处理任务失败和重试等情况。

关系:一个Driver可以产生多个Application;一个Application可以产生多个Job​​​​​​​;一个Job对应多个Stage;一个Stage对应一个TaskSet(TaskSet是Stage内部调度的基本单位);一个Stage对应多个Task(一个TaskSet为一组Task集合);一个Task对应一个分区;

每个Application都有自己独立的执行环境和资源分配,它们之间相互独立,互不干扰。每个Application都会有自己的SparkContext,用于与集群进行通信和资源管理。


如有错误,欢迎指出!!!

如有错误,欢迎指出!!!

如有错误,欢迎指出!!!

扩展文章推荐:

1500字带你读懂 Spark任务的角色分工! - 知乎

一篇文章搞清spark任务如何执行 - 掘金

Spark[二]——Spark的组件们[Application、Job、Stage、TaskSet、Task] - 掘金

这篇关于Spark中的Driver、Executor、Stage、TaskSet、DAGScheduler等介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760949

相关文章

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系