【Text2SQL 经典模型】X-SQL

2024-05-24 22:36

本文主要是介绍【Text2SQL 经典模型】X-SQL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:X-SQL: reinforce schema representation with context

⭐⭐⭐⭐

Microsoft, arXiv:1908.08113

X-SQL 与 SQLova 类似,使用 BERT style 的 PLM 来获得 representation,只是融合 NL question 和 table schema 的信息的方式不太一样,也就是在利用 BERT-style 得到的 representation 后进一步的加工方式不一样。

X-SQL 先由 BERT-style PLM 生成 question 和 schema 的 representation,然后对 schema representation 做上下文信息的进一步加强,再交由 6 个 sub-task 分别构建出 SQL 的一部分,最终得到完整的 SQL

一、X-SQL

整个架构包含三层:sequence encoder、context enhancing schema encoder 和 output layer。

1.1 Sequence Encoder:得到 PLM 的 representation

将 question 和 table headers 拼装成下面的形式(与 SQLova 的类似):

  • 有一个特殊的空 column 被附加到每个 table schema 最后,也就是实际最后一个 column 后面会在加一个 [EMPTY]
  • [CLS] 重命名为 [CTX],用来强调这里是捕获上下文信息,而非用于下游任务的 representation
  • SQLova 中的 segment embeddings 被替换为 type embeddings,这是我们为四种 types 学习的 embeddings:question、categorial column、numerical column 和 special empty column

另外,这里的 PLM 不是使用 BERT-Large 初始化的,而是使用 MT-DNN 初始化的,它与 BERT 架构相同,只是在多个 GLUE 任务上做过训练,从而能够得到更好的用于下游任务的 representation。

经过这一层,我们为 question 和 table schema 的每个 token 都利用 BERT-style PLM 生成一个 hidden state。

1.2 Context Enhanced Schema Encoder:加强 schema representation

在上一层 seq encoder 中,我们为 question 和 table headers 的每个 token 都得到一个 hidden state vector,在这一层,我们的 context enchanced schema encoder 通过用 h [ C T X ] h_{[CTX]} h[CTX] 来加强前面 encoder 的输出,从而得到每个 column 的一个新的 representation h C i h_{C_i} hCi,它代表 column i 的新 representation。

论文认为,尽管 BERT style 的 sequence encoder 在它的 output 中也捕捉到了一定的 context,但是这种 context influence 受限于 self-attention 的机制(它倾向于关注某个特定 region 从而缺少全局信息),所以这里使用带有全局信息的 [CTX] 的 hidden state 来加强 representation。

这里的具体做法就是,将 column i 的所有 token 的 hidden state 和 h [ C T X ] h_{[CTX]} h[CTX] 一起输入到一个 Attention 层中,得到加强后的新的 column i i i 的 representation:

经过这一层 encoder,我们得到了上下文增强的 schema representation,也就是每个 column 的新 representation

这一步的做法也体现出 X-SQL 与 SQLova 的区别,这一层的 “context enchanced schema encoder” 和 SQLova 中引入的 column-attention 机制都是为了相同的目标:更好地对齐 question 和 table schema,但两者的实现思路却不同:

  • column-attention 通过将 column 作为条件来改变 question 的编码
  • context enchanced schema encoder 认为 BERT-style 的 encoder 已经足够好了,只是基于此并试图使用 [CTX] 中捕获的全局上下文信息来得到一个更好的 representation。

1.3 Output Layer:完成各 sub-task 生成 SQL

这一层借助 sequence encoder 输出的 hidden states 和 context enchanced schema encoder 输出的 h C 1 h_{C_1} hC1 h C 2 h_{C_2} hC2、…、 h [ E M P T Y ] h_{[EMPTY]} h[EMPTY] 来生成 SQL。这里的思路也是基于 SQL sketch 并填充 slots。

这一步的任务被分解成了 6 个子任务,每个子任务预测最终 SQL 程序的一部分。

1.3.1 用来修正 schema representation 的 sub-network

首先,这里引入了一个 sub-network 用来调整 schema representation with context,具体来说,就是分别对 H [ C T X ] H_{[CTX]} H[CTX] H C i H_{C_i} HCi 做一个仿射变换,再加起来经过一个 LayerNorm 得到 r C i r_{C_i} rCi(column i 一个修正后的 representation),图示如下:

公式如下:

注意,这个 sub-network 在每个 sub-task 中都是独立训练的,也就是每个 sub-task 得到的 r C i r_{C_i} rCi 是不同的,这也体现了这个 sub-network 就是针对一个具体 task 来修正 schema representation

之后,各个 sub-task 就可以基于我们之前得到的 vectors 和 r C i r_{C_i} rCi 来做了。

1.3.2 sub-task 1:S-COL

S-COL 任务是预测 SELECT 语句中的 columns,这其实就是计算各个 columns 的一个概率,计算方式如下:

20240524214322

可以看到,这里只使用了 r C i r_{C_i} rCi,另外的 W W W 是一个可训练参数。

1.3.3 sub-task 2:S-AGG

直觉来说,aggregator 的选择会依赖所选中的 column 的类型,比如 aggregator MIN 只能被用于数字类型的 column。为了实现这个直觉,这个 task 在做 aggregator 分类时,会利用到 column type 的 embedding:

20240524214556

具体公式可以参考原论文

1.3.4 其他 sub-task

其他 sub-task 共同确定出 WHERE 部分,这里可以具体参考原论文,整体思路是差不多的。

二、总结

通过以上改进,X-SQL 在表现 WikiSQL 上的表现提升到 90% 以上,超过了 SQLova:

本文对 BERT-style 生成的 representation 的进一步的加工利用值得研究学习。

这篇关于【Text2SQL 经典模型】X-SQL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999723

相关文章

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

MySQL进阶之路索引失效的11种情况详析

《MySQL进阶之路索引失效的11种情况详析》:本文主要介绍MySQL查询优化中的11种常见情况,包括索引的使用和优化策略,通过这些策略,开发者可以显著提升查询性能,需要的朋友可以参考下... 目录前言图示1. 使用不等式操作符(!=, <, >)2. 使用 OR 连接多个条件3. 对索引字段进行计算操作4

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot