Pytorch入门(7)—— 梯度累加(Gradient Accumulation)

2024-05-24 20:52

本文主要是介绍Pytorch入门(7)—— 梯度累加(Gradient Accumulation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 梯度累加

  • 在训练大模型时,batch_size 最大值往往受限于显存容量上限,当模型非常大时,这个上限可能小到不可接受。梯度累加(Gradient Accumulation)是一个解决该问题的 trick
  • 梯度累加的思想很简单,就是时间换空间。具体而言,我们不在每个 batch data 梯度计算后直接更新模型,而是多算几个 batch 后,使用这些 batch 的平均梯度更新模型,从而放大等效 batch_size。如下图所示
    在这里插入图片描述
  • 用公式表示:设 batch size 为 n n n,模型参数为 w \pmb{w} w,样本 i i i 的损失为 l i l_i li,则正常情况下 sgd 参数更新为
    w ← w + α ∑ i = 1 n 1 n ∂ l i ∂ w \pmb{w} \leftarrow \pmb{w} + \alpha \sum_{i=1}^n\frac{1}{n}\frac{\partial l_i}{\partial \pmb{w}} ww+αi=1nn1wli 使用梯度累加时,设累加步长为 m m m(即计算 m m m 个 batch 梯度后用梯度均值更新一次),sgd 更新如下
    w ← w + α 1 m ∑ b = 1 m ∑ i = 1 n 1 n ∂ l b i ∂ w = w + α ∑ i = 1 m n 1 m n ∂ l i ∂ w \begin{aligned} \pmb{w} &\leftarrow \pmb{w} + \alpha \frac{1}{m} \sum_{b=1}^m \sum_{i=1}^n\frac{1}{n}\frac{\partial l_{bi}}{\partial \pmb{w}} \\ &= \pmb{w} + \alpha \sum_{i=1}^{mn}\frac{1}{mn} \frac{\partial l_i}{\partial \pmb{w}} \end{aligned} ww+αm1b=1mi=1nn1wlbi=w+αi=1mnmn1wli 可见这等价于使用 batch_size = m n mn mn 进行训练

2. 在 pytorch 中实现梯度累加

2.1 伪代码

  • pytorch 使用和 tensor 绑定的自动微分机制。每个 tensor 对象都有 .grad 属性存储其中每个元素的梯度值,通过 .requires_grad 属性控制其是否参与梯度计算。训练模型时,一般通过对标量 loss 执行 loss.backward() 自动进行反向传播,以得到计算图中所有 tensor 的梯度。详见 PyTorch入门(2)—— 自动求梯度
  • pytorch 中梯度 tensor.grad 不会自动清零,而会在每次反向传播过程中自动累加,所以一般在反向传播前把梯度清零
    for inputs, labels in data_loader:# forward pass preds = model(inputs)loss  = criterion(preds, labels)# clear grad of last batch	optimizer.zero_grad()# backward pass, calculate grad of batch dataloss.backward()# update modeloptimizer.step()
    
    这种设计对于实现梯度累加 trick 是很方便的,我们可以在 batch 计算过程中进行计数,仅在达到计数达到更新步长时进行一次参数更新并清零梯度,即
    # batch accumulation parameter
    accum_iter = 4  # loop through enumaretad batches
    for batch_idx, (inputs, labels) in enumerate(data_loader):# forward pass preds = model(inputs)loss  = criterion(preds, labels)# scale the loss to the mean of the accumulated batch sizeloss = loss / accum_iter # backward passloss.backward()# weights updateif ((batch_idx + 1) % accum_iter == 0) or (batch_idx + 1 == len(data_loader)):optimizer.step()optimizer.zero_grad()
    

2.2 线性回归案例

  • 下面使用来自 经典机器学习方法(1)—— 线性回归 的简单线性回归任务说明梯度累加的具体实现方法

    本节代码直接从 jupyter notebook 复制而来,可能无法直接运行!

  • 首先生成随机数据构造 dataset
    import torch
    from IPython import display
    from matplotlib import pyplot as plt
    import numpy as np
    import random
    import torch.utils.data as Data
    import torch.nn as nn
    import torch.optim as optim# 生成样本
    num_inputs = 2
    num_examples = 1000
    true_w = torch.Tensor([-2,3.4]).view(2,1)
    true_b = 4.2
    batch_size = 10# 1000 个2特征样本,每个特征都服从 N(0,1)
    features = torch.randn(num_examples, num_inputs, dtype=torch.float32) # 生成真实标记
    labels = torch.mm(features,true_w) + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)# 包装数据集,将训练数据的特征和标签组合
    dataset = Data.TensorDataset(features, labels)
    
    1. 不使用梯度累加技巧,batch size 设置为 40
      # 构造 DataLoader
      batch_size = 40
      data_iter = Data.DataLoader(dataset, batch_size, shuffle=False)	# shuffle=False 保证实验可比# 定义模型
      net = nn.Sequential(nn.Linear(num_inputs, 1))# 初始化模型参数
      nn.init.normal_(net[0].weight, mean=0, std=0)
      nn.init.constant_(net[0].bias, val=0)# 均方差损失函数
      criterion = nn.MSELoss()# SGD优化器
      optimizer = optim.SGD(net.parameters(), lr=0.01)# 模型训练
      num_epochs = 3
      for epoch in range(1, num_epochs + 1):epoch_loss = []for X, y in data_iter:# 正向传播,计算损失output = net(X) loss = criterion(output, y.view(-1, 1))# 梯度清零optimizer.zero_grad()            # 计算各参数梯度loss.backward()#print('backward: ', net[0].weight.grad)# 更新模型optimizer.step()epoch_loss.append(loss.item()/batch_size)print(f'epoch {epoch}, loss: {np.mean(epoch_loss)}')'''
      epoch 1, loss: 0.5434057731628418
      epoch 2, loss: 0.1914414196014404
      epoch 3, loss: 0.06752514398097992
      '''
      
    2. 使用梯度累加,batch size 设置为 10,步长设为 4,等效 batch size 为 40
      # 构造 DataLoader
      batch_size = 10
      accum_iter = 4
      data_iter = Data.DataLoader(dataset, batch_size, shuffle=False)	# shuffle=False 保证实验可比# 定义模型
      net = nn.Sequential(nn.Linear(num_inputs, 1))# 初始化模型参数
      nn.init.normal_(net[0].weight, mean=0, std=0)
      nn.init.constant_(net[0].bias, val=0)# 均方差损失
      criterion = nn.MSELoss()# SGD优化器对象
      optimizer = optim.SGD(net.parameters(), lr=0.01)# 模型训练
      num_epochs = 3
      for epoch in range(1, num_epochs + 1):epoch_loss = []for batch_idx, (X, y) in enumerate(data_iter):# 正向传播,计算损失output = net(X) loss = criterion(output, y.view(-1, 1))  loss = loss / accum_iter	# 取各个累计batch的平均损失,从而在.backward()时得到平均梯度# 反向传播,梯度累计loss.backward()if ((batch_idx + 1) % accum_iter == 0) or (batch_idx + 1 == len(data_iter)):#print('backward: ', net[0].weight.grad)# 更新模型optimizer.step()              # 梯度清零optimizer.zero_grad()epoch_loss.append(loss.item()/batch_size)print(f'epoch {epoch}, loss: {np.mean(epoch_loss)}')
      '''
      epoch 1, loss: 0.5434057596921921
      epoch 2, loss: 0.19144139245152472
      epoch 3, loss: 0.06752512042224407
      '''
      
  • 可以观察到无论 epoch loss 还是 net[0].weight.grad 都完全相同,说明梯度累加不影响计算结果

这篇关于Pytorch入门(7)—— 梯度累加(Gradient Accumulation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999503

相关文章

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: