跳房子游戏-第13届蓝桥杯选拔赛Python真题精选

2024-05-24 16:28

本文主要是介绍跳房子游戏-第13届蓝桥杯选拔赛Python真题精选,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第71讲。

跳房子游戏,本题是2021年10月24日举办的第13届蓝桥杯青少组Python编程选拔赛真题编程部分第5题。题目要求编程模拟跳房子游戏,计算出小明最少需要跳几次就可以完成游戏,完成游戏时哪只脚落地?

先来看看题目的要求吧。

一.题目说明

编程实现:

小明和同学们玩跳房子的游戏,现给出一排房子,请计算出小明最少需要跳几次就可以完成游戏,完成游戏时哪只脚落地?(0代表左脚,1代表右脚)

游戏规则1:

地上画有n个正方形依次排开代表房子,每个房子里标有数字,数字代表最多可以跳几个房子,数字不能为0(如:数字为2,可以直接向前跳1个房子,也可以直接向前跳2个房子)。

图片

例如:

地上画有5个正方形代表房子,房子里面的数字分别为2,1,4,2,1。

小明在第1个房子时可以选择跳到第2个房子或者第3个房子,为了所跳次数最少选择跳到第3个房子(房子数字为4);房间数字为4,可以选择跳到第4个房子或者第5个房子,为了所跳次数最少选择跳到第5个房子。故至少需要跳两次就可以完成游戏。

游戏规则2:

只能单脚落地,左脚起跳右脚落地,右脚起跳左脚落地;第一次起跳为左脚。

例如:

小明一共跳两次,第一次左脚起跳,右脚落地;第二次右脚起跳,左脚落地;完成游戏时左脚落地。

输入描述:

第一行输入n个正整数,正整数之间用英文逗号隔开

输出描述:

输出两个整数,整数之间用英文逗号隔开;第一个整数表示最少跳的次数,第二个整数表示落地的脚(0代表左脚,1代表右脚)

样例输入:

2,1,4,2,1

样例输出:

2,0

二.思路分析

这是一道算法题,涉及的知识点包括循环、列表、递归算法和动态规划等。

对于这个问题,首先能想到的是贪心算法,就是每次按照房间里的数字跳就行。

比如题目给出的样例,第一个房间数字为2,直接跳过两个房子,到第3个房间,然后跳过4个房间(实际上只需要跳过两个房间),就可以完成游戏,如图所示:

图片

看起来好像是可以的,但是我们再换个测试数据看看, 如下:

图片

此时,如果采取贪心策略,第一次直接跳过两个房间,然后每次跳过一个房间,那么,一共需要跳4次才能完成游戏,如图:

图片

实际上,第一次只需要跳过一个房间,到达第二个房间,然后再跳过3个房间,这样一来,只要3次就可以完成游戏,如图:

图片

这说明,贪心算法并不能解决这个问题,它只能获取每一步的最优解,但不一定是整个问题的最优解。

其实这个问题有点类似于爬楼梯,如图:

图片

要爬到最顶层n,你可以从从第n - 1层上来,也可以从第n - 2层、n - 2层,甚至是第1层,只要你能一次跨越足够多的楼梯。

你站在每一层上,能够跨越的最大层数就是题目中所说的房间里的数字,如2,1,4,2,1。

所以,这是一个变种的斐波那契数列问题,假定f(n)表示到第n个房间的最小跳跃次数。那么,你可以从任意一个房间跳跃一次过了,有如下选择:

f(1),如果可以跳跃f(2),如果可以跳跃f(3),如果可以跳跃...f(n - 1),如果可以跳跃

所以,我们需要循环遍历前面所有的房间,从可以一次跳跃过来的房间中找到次数最少的那个房间。

如此一来,问题就比较明朗了,针对斐波那契数列问题,通常可以采用递归和动态规划等算法来实现。

思路有了,接下来,我们就进入具体的编程实现环节。

三.编程实现

根据上面的思路分析,我们使用两种方法来编写程序:

  • 递归算法

  • 动态规划

1. 递归算法

根据前面的思路分析,我们先定义递归函数,如下:

图片

代码不多,说明3点:

1). 为了方便,这里用0表示第1个房间,1表示第2个房间,小明一开始就在第1个房间,不需要跳跃,所以返回0,要跳到第2个房间,一次就行,所以返回1;

2). 为了计算最小值,定义了遍历_min,同时将其设置为无穷大;

3). 对于任何一个房间i,都需要考虑从1 ~ i -1之间所有的房间,如果可以跨越,则计算其次数,然后获取最小次数。

接下来,获取输入的数据,调用函数处理即可,代码如下:

图片

代码比较简单,说明两点:

1). 将输入的字符串,进行分解并转成整型,保存到rooms列表中,这里使用了列表推导式的编程技巧;

2). 计算最后落地脚是根据次数的奇偶性来判断的,如果是偶数,则为左脚,如果是奇数,则为右脚。

递归的代码比较好理解,但是有一个小问题,就是随着n的增加,时间复杂度和空间复杂度急剧增加,因为它包含了大量重复的计算。

通常情况下, 我们可以使用一个备忘录将已经计算过的房间保存起来,从而提升的代码效率,通常把这种递归称作带备忘录的递归。

修改代码如下:

图片

说明两点:

1). 函数增加了一个参数memo,它是一个列表,用来保存f(i)的值;

2). 在计算f(i)的值时,如果不为0,说明已经计算过,直接返回memo[i],否则就计算f(i)的值,再保存到memo[i]中,然后返回。

2. 动态规划

使用动态规划的思想是先定义一个列表dp[i],表示从第一个房间开始到达第i个房间的最小跳跃次数,确定好初始状态,然后使用循环挨个求解,从而得到最终的结果。

其代码如下:

图片

代码的意思和递归其实差不多,只是一个使用递归函数来计算f(i),一个是使用循环来计算dp[i]。

至此,整个程序就全部完成了,你可以输入不同的数字来测试效果啦。

四.总结与思考

本题代码在15行左右,涉及到的知识点包括:

  • 循环语句;

  • 列表操作;

  • 输入输出处理;

  • 递归算法;

  • 动态规划算法;

作为本次测评的最后一题,难度较大。关键点有两个,一是要彻底理解题目的意思,找到正确的解决方案,二是要善于将新问题转换为我们熟悉的问题,从而简化问题。

针对第一点,我们需要多列举几组不同特点的数据来进行分析测试,看看到底有什么规律,适合哪种算法。

对于求最值问题,常见的解决方案就是暴力枚举、贪心算法和动态规划,找到正确的方案至关重要了,一旦方向弄错了,后面的努力就都白费了。

针对第二点,这涉及到一个非常重要的学习理念--关联学习,什么样的学习最轻松、最有效,关联学习绝对是排得上号的。

一旦将本题和斐波那契数列关联起来,你会有一种豁然开朗的感觉,思路一下子完全打开了,这就是我们为什么要学习经典算法、经典案例的原因。

关于本题中使用的递归算法和动态规划算法,看起来完全不同,实际上关系非常密切。

它们有着相同的推导公式,有着相同的初始状态,所不同的是递归算法采取的是自顶向下,而动态规划采取的是自底向上。

实际上,凡是可以使用动态的地方,都可以使用递归算法来实现,而且强烈建议大家对于这类问题,一定要尝试使用两种算法来实现。

你还有什么好的想法和创意吗,也非常欢迎和超平老师分享探讨。

如果你觉得文章对你有帮助,别忘了点赞和转发,予人玫瑰,手有余香😄

需要源码的,可以移步至“超平的编程课”gzh。

这篇关于跳房子游戏-第13届蓝桥杯选拔赛Python真题精选的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998921

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py