【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)

本文主要是介绍【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少提取特征困难目标识别和定位精度低等问题,给检测带来一定的难度。

     🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。

      ⭐本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。

👑完整代码已打包上传至资源→低照度图像增强代码汇总

目录

前言

🚀一、RDDNet介绍 

☀️1.1 RDDNet简介   

研究背景 

算法框架 

损失函数

🚀二、RDDNet核心代码

 ☀️2.1 网络模型—RRDNet.py

 ☀️2.2 损失函数—loss_functions.py

(1)重构损失——reconstruction_loss

(2)光照损失——illumination_smooth_loss

(3)反射损失——reflectance_smooth_loss

(4)噪声损失——noise_loss

  ☀️2.3 Retinex操作—pipline.py

🚀三、RDDNet代码复现

☀️3.1 环境配置

☀️3.2 运行过程

☀️3.3 运行效果

 

🚀一、RDDNet介绍 

学习资料:

  • 论文题目:《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》(通过鲁棒性 Retinex 分解对曝光不足的图像进行零样本恢复)
  • 论文讲解:ICME| RRDNet《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》论文超详细解读(翻译+精读)
  • 原文地址:Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition | IEEE Conference Publication | IEEE Xplore
  • 源码地址:代码export.arxiv.org/pdf/2109.05838v2.pdf

☀️1.1 RDDNet简介   

RRDNet同济大学在2020年提出来的一种新的三分支全卷积神经网络,认为图像由三部分构成:光照分量反射分量噪声分量。在没有pair对的情况下实现低光图像增强,通过对loss进行迭代来有效估计出噪声和恢复光照。 

研究背景 

  • 曝光不足的图像由于能见度差和黑暗中的潜在噪声,通常会出现严重的质量下降。
  • 现有的图像增强方法忽略了噪声,因此使用带噪声分量的Retinex模型作为基础。
  • 基于学习(数据驱动)的方法限制了模型的泛化能力,因此提出zero-shot的学习模式。

算法框架 

  1. 通过三分支网络把输入图像分解为反射图、光照图和噪声图三个分量。
  2. 通过Gamma变换调整光照图,再计算得到无噪声的反射图。
  3. 结合光照图和反射图,重构得到最终结果。 

损失函数

1. Retinex重构损失,取最大通道值作为初始光照图,用来约束光照图。在光照图的基础上约束反射图和噪声。

2. 纹理增强损失,通过平滑光照图可以帮助增强反射图的纹理。具体损失公式是带有权重的总变分损失,权重的设计规则是,梯度大的地方权重小,即权重与梯度成负相关即可,这里是将梯度经过高斯滤波放在分母。

3. 光照指导的噪声损失,根据噪声随着光照的变大而变大的假设,可以使用光照图来做权重指导,其次考虑两点:

(1)假定噪声范围限定

(2)通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪


🚀二、RDDNet核心代码

 代码框架如图所示:

(图片来源:【代码笔记】RRDNet 网络-CSDN博客 谢谢大佬!@chaiky) 

 ☀️2.1 网络模型—RRDNet.py

import torch
import torch.nn as nnclass RRDNet(nn.Module):def __init__(self):super(RRDNet, self).__init__()#----------- 1.illumination(光照估计)---------------------------#self.illumination_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 1, 3, 1, 1),)#----------- 2.reflectance(反射率估计)---------------------------#self.reflectance_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))#----------- 3.noise(噪声估计)---------------------------#self.noise_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))def forward(self, input):illumination = torch.sigmoid(self.illumination_net(input))reflectance = torch.sigmoid(self.reflectance_net(input))noise = torch.tanh(self.noise_net(input))return illumination, reflectance, noise

  我们可以对照上图左边的结构来理解代码。

  • illumination_net:  主要是负责对输入图像进行处理以获取光照信息,包括一系列卷积层和ReLU激活函数,最终输出一个通道数为1的图像,表示光照强度

  • reflectance_net:  主要是负责提取输入图像的反射率信息,同样包括一系列卷积层和ReLU激活函数,最终输出一个通道数为3的图像,表示反射率在RGB通道上的分布。

  • noise_net:  主要是则用于估计输入图像的噪声信息,同样由一系列卷积层和ReLU激活函数组成,最终输出一个通道数为3的图像,表示噪声在RGB通道上的分布。

 最后,illumination_netreflectance_net的输出经过sigmoid函数处理,而noise_net的输出则经过tanh函数处理。


 ☀️2.2 损失函数—loss_functions.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import conf#----------- 1.reconstruction_loss:计算重构损失---------------------------#
def reconstruction_loss(image, illumination, reflectance, noise):reconstructed_image = illumination*reflectance+noisereturn torch.norm(image-reconstructed_image, 1)#----------- 2.gradient: 计算输入图像在水平和垂直方向上的梯度--------------------#
def gradient(img):height = img.size(2)width = img.size(3)gradient_h = (img[:,:,2:,:]-img[:,:,:height-2,:]).abs()gradient_w = (img[:, :, :, 2:] - img[:, :, :, :width-2]).abs()gradient_h = F.pad(gradient_h, [0, 0, 1, 1], 'replicate')gradient_w = F.pad(gradient_w, [1, 1, 0, 0], 'replicate')gradient2_h = (img[:,:,4:,:]-img[:,:,:height-4,:]).abs()gradient2_w = (img[:, :, :, 4:] - img[:, :, :, :width-4]).abs()gradient2_h = F.pad(gradient2_h, [0, 0, 2, 2], 'replicate')gradient2_w = F.pad(gradient2_w, [2, 2, 0, 0], 'replicate')return gradient_h*gradient2_h, gradient_w*gradient2_w#----------- 3.normalize01: 将输入图像进行归一化到0到1的范围内---------------------#
def normalize01(img):minv = img.min()maxv = img.max()return (img-minv)/(maxv-minv)#----------- 4.gaussianblur3: 3通道的高斯模糊---------------------------#
def gaussianblur3(input):slice1 = F.conv2d(input[:,0,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice2 = F.conv2d(input[:,1,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice3 = F.conv2d(input[:,2,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)x = torch.cat([slice1,slice2, slice3], dim=1)return x#----------- 5.illumination_smooth_loss: 计算光照平滑损失---------------------------#
def illumination_smooth_loss(image, illumination):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]max_rgb, _ = torch.max(image, 1)max_rgb = max_rgb.unsqueeze(1)gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_illu_h, gradient_illu_w = gradient(illumination)weight_h = 1/(F.conv2d(gradient_gray_h, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_w = 1/(F.conv2d(gradient_gray_w, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_h.detach()weight_w.detach()loss_h = weight_h * gradient_illu_hloss_w = weight_w * gradient_illu_wmax_rgb.detach()return loss_h.sum() + loss_w.sum() + torch.norm(illumination-max_rgb, 1)#----------- 6.reflectance_smooth_loss:计算反射率平滑损失---------------------------#
def reflectance_smooth_loss(image, illumination, reflectance):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_reflect_h, gradient_reflect_w = gradient(reflectance)weight = 1/(illumination*gradient_gray_h*gradient_gray_w+0.0001)weight = normalize01(weight)weight.detach()loss_h = weight * gradient_reflect_hloss_w = weight * gradient_reflect_wrefrence_reflect = image/illuminationrefrence_reflect.detach()return loss_h.sum() + loss_w.sum() + conf.reffac*torch.norm(refrence_reflect - reflectance, 1)#----------- 7.noise_loss: 计算噪声损失---------------------------#
def noise_loss(image, illumination, reflectance, noise):weight_illu = illuminationweight_illu.detach()loss = weight_illu*noisereturn torch.norm(loss, 2)
(1)重构损失——reconstruction_loss

图像的分解组件必须满足Robust Retinex的公式,将RGB三个通道中最大强度值S的初始值,在此基础上约束反射图和噪声。

(2)光照损失——illumination_smooth_loss

通过平滑的光照图可以增强暗区域的纹理细节,公式中x和y是水平和垂直方向,Wx和Wy是确保图像平滑的权重参数。

权重与梯度呈反比,梯度大的地方权重小,梯度小的地方权重大,因此将高斯滤波G放在分母,这里公式中的I是输入图像转换成的灰度图,Wy的计算方式和Wx的相同。

(3)反射损失——reflectance_smooth_loss

通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪。

(4)噪声损失——noise_loss

为了增加图像的清晰度增加了图像的对比度,与此同时,图像的噪声也被放大,出于以下两点限制噪声:

  1. 噪声的范围需要被限制。
  2. 噪声可以平滑的反射图限制。


  ☀️2.3 Retinex操作—pipline.py

import os
import numpy as np
import cv2
import torch
import torch.optim as optim
import torch.nn as nn
from PIL import Image
from torchvision import transforms
import torch.nn.init as initfrom model.RRDNet import RRDNet
from loss.loss_functions import reconstruction_loss, illumination_smooth_loss, reflectance_smooth_loss, noise_loss, normalize01
import conf#----------- retinex图像增强---------------------------#
def pipline_retinex(net, img):img_tensor = transforms.ToTensor()(img)  # [c, h, w] #将输入图像转换为张量,并调整形状img_tensor = img_tensor.to(conf.device)img_tensor = img_tensor.unsqueeze(0)     # [1, c, h, w]optimizer = optim.Adam(net.parameters(), lr=conf.lr)# iterations:迭代优化过程for i in range(conf.iterations+1):# forward:通过网络前向传播得到光照、反射率和噪声图像。illumination, reflectance, noise = net(img_tensor)  # [1, c, h, w]# loss computing:计算总损失,并进行反向传播优化网络参数。loss_recons = reconstruction_loss(img_tensor, illumination, reflectance, noise)  # 重构损失loss_illu = illumination_smooth_loss(img_tensor, illumination) # 光照损失loss_reflect = reflectance_smooth_loss(img_tensor, illumination, reflectance) #反射损失loss_noise = noise_loss(img_tensor, illumination, reflectance, noise) # 噪声损失loss = loss_recons + conf.illu_factor*loss_illu + conf.reflect_factor*loss_reflect + conf.noise_factor*loss_noise# backwardnet.zero_grad()loss.backward()optimizer.step()# log:每隔 100 次迭代打印日志,显示重建损失、光照损失、反射率损失和噪声损失的数值。if i%100 == 0:print("iter:", i, '  reconstruction loss:', float(loss_recons.data), '  illumination loss:', float(loss_illu.data), '  reflectance loss:', float(loss_reflect.data), '  noise loss:', float(loss_noise.data))# adjustment:对增强后的图像进行调整adjust_illu = torch.pow(illumination, conf.gamma)res_image = adjust_illu*((img_tensor-noise)/illumination)# 对增强后的图像进行调整res_image = torch.clamp(res_image, min=0, max=1)# 对调整后的图像进行限幅操作,确保像素值在 0 到 1 之间。if conf.device != 'cpu':res_image = res_image.cpu()illumination = illumination.cpu()adjust_illu = adjust_illu.cpu()reflectance = reflectance.cpu()noise = noise.cpu()# 将处理后的张量转换为 PIL 图像res_img = transforms.ToPILImage()(res_image.squeeze(0))illum_img = transforms.ToPILImage()(illumination.squeeze(0))adjust_illu_img = transforms.ToPILImage()(adjust_illu.squeeze(0))reflect_img = transforms.ToPILImage()(reflectance.squeeze(0))noise_img = transforms.ToPILImage()(normalize01(noise.squeeze(0)))return res_img, illum_img, adjust_illu_img, reflect_img, noise_imgif __name__ == '__main__':# Init Modelnet = RRDNet()net = net.to(conf.device)# Testimg = Image.open(conf.test_image_path)res_img, illum_img, adjust_illu_img, reflect_img, noise_img = pipline_retinex(net, img)res_img.save('./test/result.jpg')illum_img.save('./test/illumination.jpg')adjust_illu_img.save('./test/adjust_illumination.jpg')reflect_img.save('./test/reflectance.jpg')noise_img.save('./test/noise_map.jpg')

这段代码基本都注释了,就不再详细讲解了~


🚀三、RDDNet代码复现

☀️3.1 环境配置

  • Python 3
  • PyTorch >= 0.4.1
  • PIL >= 6.1.0
  • Opencv-python>=3.4

☀️3.2 运行过程

这个也是运行比较简单,配好环境就行 。不再过多叙述~


☀️3.3 运行效果

没错,你怎么知道我去看邓紫棋演唱会啦~ 

这篇关于【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998812

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC