【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)

本文主要是介绍【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少提取特征困难目标识别和定位精度低等问题,给检测带来一定的难度。

     🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。

      ⭐本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。

👑完整代码已打包上传至资源→低照度图像增强代码汇总

目录

前言

🚀一、RDDNet介绍 

☀️1.1 RDDNet简介   

研究背景 

算法框架 

损失函数

🚀二、RDDNet核心代码

 ☀️2.1 网络模型—RRDNet.py

 ☀️2.2 损失函数—loss_functions.py

(1)重构损失——reconstruction_loss

(2)光照损失——illumination_smooth_loss

(3)反射损失——reflectance_smooth_loss

(4)噪声损失——noise_loss

  ☀️2.3 Retinex操作—pipline.py

🚀三、RDDNet代码复现

☀️3.1 环境配置

☀️3.2 运行过程

☀️3.3 运行效果

 

🚀一、RDDNet介绍 

学习资料:

  • 论文题目:《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》(通过鲁棒性 Retinex 分解对曝光不足的图像进行零样本恢复)
  • 论文讲解:ICME| RRDNet《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》论文超详细解读(翻译+精读)
  • 原文地址:Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition | IEEE Conference Publication | IEEE Xplore
  • 源码地址:代码export.arxiv.org/pdf/2109.05838v2.pdf

☀️1.1 RDDNet简介   

RRDNet同济大学在2020年提出来的一种新的三分支全卷积神经网络,认为图像由三部分构成:光照分量反射分量噪声分量。在没有pair对的情况下实现低光图像增强,通过对loss进行迭代来有效估计出噪声和恢复光照。 

研究背景 

  • 曝光不足的图像由于能见度差和黑暗中的潜在噪声,通常会出现严重的质量下降。
  • 现有的图像增强方法忽略了噪声,因此使用带噪声分量的Retinex模型作为基础。
  • 基于学习(数据驱动)的方法限制了模型的泛化能力,因此提出zero-shot的学习模式。

算法框架 

  1. 通过三分支网络把输入图像分解为反射图、光照图和噪声图三个分量。
  2. 通过Gamma变换调整光照图,再计算得到无噪声的反射图。
  3. 结合光照图和反射图,重构得到最终结果。 

损失函数

1. Retinex重构损失,取最大通道值作为初始光照图,用来约束光照图。在光照图的基础上约束反射图和噪声。

2. 纹理增强损失,通过平滑光照图可以帮助增强反射图的纹理。具体损失公式是带有权重的总变分损失,权重的设计规则是,梯度大的地方权重小,即权重与梯度成负相关即可,这里是将梯度经过高斯滤波放在分母。

3. 光照指导的噪声损失,根据噪声随着光照的变大而变大的假设,可以使用光照图来做权重指导,其次考虑两点:

(1)假定噪声范围限定

(2)通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪


🚀二、RDDNet核心代码

 代码框架如图所示:

(图片来源:【代码笔记】RRDNet 网络-CSDN博客 谢谢大佬!@chaiky) 

 ☀️2.1 网络模型—RRDNet.py

import torch
import torch.nn as nnclass RRDNet(nn.Module):def __init__(self):super(RRDNet, self).__init__()#----------- 1.illumination(光照估计)---------------------------#self.illumination_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 1, 3, 1, 1),)#----------- 2.reflectance(反射率估计)---------------------------#self.reflectance_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))#----------- 3.noise(噪声估计)---------------------------#self.noise_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))def forward(self, input):illumination = torch.sigmoid(self.illumination_net(input))reflectance = torch.sigmoid(self.reflectance_net(input))noise = torch.tanh(self.noise_net(input))return illumination, reflectance, noise

  我们可以对照上图左边的结构来理解代码。

  • illumination_net:  主要是负责对输入图像进行处理以获取光照信息,包括一系列卷积层和ReLU激活函数,最终输出一个通道数为1的图像,表示光照强度

  • reflectance_net:  主要是负责提取输入图像的反射率信息,同样包括一系列卷积层和ReLU激活函数,最终输出一个通道数为3的图像,表示反射率在RGB通道上的分布。

  • noise_net:  主要是则用于估计输入图像的噪声信息,同样由一系列卷积层和ReLU激活函数组成,最终输出一个通道数为3的图像,表示噪声在RGB通道上的分布。

 最后,illumination_netreflectance_net的输出经过sigmoid函数处理,而noise_net的输出则经过tanh函数处理。


 ☀️2.2 损失函数—loss_functions.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import conf#----------- 1.reconstruction_loss:计算重构损失---------------------------#
def reconstruction_loss(image, illumination, reflectance, noise):reconstructed_image = illumination*reflectance+noisereturn torch.norm(image-reconstructed_image, 1)#----------- 2.gradient: 计算输入图像在水平和垂直方向上的梯度--------------------#
def gradient(img):height = img.size(2)width = img.size(3)gradient_h = (img[:,:,2:,:]-img[:,:,:height-2,:]).abs()gradient_w = (img[:, :, :, 2:] - img[:, :, :, :width-2]).abs()gradient_h = F.pad(gradient_h, [0, 0, 1, 1], 'replicate')gradient_w = F.pad(gradient_w, [1, 1, 0, 0], 'replicate')gradient2_h = (img[:,:,4:,:]-img[:,:,:height-4,:]).abs()gradient2_w = (img[:, :, :, 4:] - img[:, :, :, :width-4]).abs()gradient2_h = F.pad(gradient2_h, [0, 0, 2, 2], 'replicate')gradient2_w = F.pad(gradient2_w, [2, 2, 0, 0], 'replicate')return gradient_h*gradient2_h, gradient_w*gradient2_w#----------- 3.normalize01: 将输入图像进行归一化到0到1的范围内---------------------#
def normalize01(img):minv = img.min()maxv = img.max()return (img-minv)/(maxv-minv)#----------- 4.gaussianblur3: 3通道的高斯模糊---------------------------#
def gaussianblur3(input):slice1 = F.conv2d(input[:,0,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice2 = F.conv2d(input[:,1,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice3 = F.conv2d(input[:,2,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)x = torch.cat([slice1,slice2, slice3], dim=1)return x#----------- 5.illumination_smooth_loss: 计算光照平滑损失---------------------------#
def illumination_smooth_loss(image, illumination):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]max_rgb, _ = torch.max(image, 1)max_rgb = max_rgb.unsqueeze(1)gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_illu_h, gradient_illu_w = gradient(illumination)weight_h = 1/(F.conv2d(gradient_gray_h, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_w = 1/(F.conv2d(gradient_gray_w, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_h.detach()weight_w.detach()loss_h = weight_h * gradient_illu_hloss_w = weight_w * gradient_illu_wmax_rgb.detach()return loss_h.sum() + loss_w.sum() + torch.norm(illumination-max_rgb, 1)#----------- 6.reflectance_smooth_loss:计算反射率平滑损失---------------------------#
def reflectance_smooth_loss(image, illumination, reflectance):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_reflect_h, gradient_reflect_w = gradient(reflectance)weight = 1/(illumination*gradient_gray_h*gradient_gray_w+0.0001)weight = normalize01(weight)weight.detach()loss_h = weight * gradient_reflect_hloss_w = weight * gradient_reflect_wrefrence_reflect = image/illuminationrefrence_reflect.detach()return loss_h.sum() + loss_w.sum() + conf.reffac*torch.norm(refrence_reflect - reflectance, 1)#----------- 7.noise_loss: 计算噪声损失---------------------------#
def noise_loss(image, illumination, reflectance, noise):weight_illu = illuminationweight_illu.detach()loss = weight_illu*noisereturn torch.norm(loss, 2)
(1)重构损失——reconstruction_loss

图像的分解组件必须满足Robust Retinex的公式,将RGB三个通道中最大强度值S的初始值,在此基础上约束反射图和噪声。

(2)光照损失——illumination_smooth_loss

通过平滑的光照图可以增强暗区域的纹理细节,公式中x和y是水平和垂直方向,Wx和Wy是确保图像平滑的权重参数。

权重与梯度呈反比,梯度大的地方权重小,梯度小的地方权重大,因此将高斯滤波G放在分母,这里公式中的I是输入图像转换成的灰度图,Wy的计算方式和Wx的相同。

(3)反射损失——reflectance_smooth_loss

通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪。

(4)噪声损失——noise_loss

为了增加图像的清晰度增加了图像的对比度,与此同时,图像的噪声也被放大,出于以下两点限制噪声:

  1. 噪声的范围需要被限制。
  2. 噪声可以平滑的反射图限制。


  ☀️2.3 Retinex操作—pipline.py

import os
import numpy as np
import cv2
import torch
import torch.optim as optim
import torch.nn as nn
from PIL import Image
from torchvision import transforms
import torch.nn.init as initfrom model.RRDNet import RRDNet
from loss.loss_functions import reconstruction_loss, illumination_smooth_loss, reflectance_smooth_loss, noise_loss, normalize01
import conf#----------- retinex图像增强---------------------------#
def pipline_retinex(net, img):img_tensor = transforms.ToTensor()(img)  # [c, h, w] #将输入图像转换为张量,并调整形状img_tensor = img_tensor.to(conf.device)img_tensor = img_tensor.unsqueeze(0)     # [1, c, h, w]optimizer = optim.Adam(net.parameters(), lr=conf.lr)# iterations:迭代优化过程for i in range(conf.iterations+1):# forward:通过网络前向传播得到光照、反射率和噪声图像。illumination, reflectance, noise = net(img_tensor)  # [1, c, h, w]# loss computing:计算总损失,并进行反向传播优化网络参数。loss_recons = reconstruction_loss(img_tensor, illumination, reflectance, noise)  # 重构损失loss_illu = illumination_smooth_loss(img_tensor, illumination) # 光照损失loss_reflect = reflectance_smooth_loss(img_tensor, illumination, reflectance) #反射损失loss_noise = noise_loss(img_tensor, illumination, reflectance, noise) # 噪声损失loss = loss_recons + conf.illu_factor*loss_illu + conf.reflect_factor*loss_reflect + conf.noise_factor*loss_noise# backwardnet.zero_grad()loss.backward()optimizer.step()# log:每隔 100 次迭代打印日志,显示重建损失、光照损失、反射率损失和噪声损失的数值。if i%100 == 0:print("iter:", i, '  reconstruction loss:', float(loss_recons.data), '  illumination loss:', float(loss_illu.data), '  reflectance loss:', float(loss_reflect.data), '  noise loss:', float(loss_noise.data))# adjustment:对增强后的图像进行调整adjust_illu = torch.pow(illumination, conf.gamma)res_image = adjust_illu*((img_tensor-noise)/illumination)# 对增强后的图像进行调整res_image = torch.clamp(res_image, min=0, max=1)# 对调整后的图像进行限幅操作,确保像素值在 0 到 1 之间。if conf.device != 'cpu':res_image = res_image.cpu()illumination = illumination.cpu()adjust_illu = adjust_illu.cpu()reflectance = reflectance.cpu()noise = noise.cpu()# 将处理后的张量转换为 PIL 图像res_img = transforms.ToPILImage()(res_image.squeeze(0))illum_img = transforms.ToPILImage()(illumination.squeeze(0))adjust_illu_img = transforms.ToPILImage()(adjust_illu.squeeze(0))reflect_img = transforms.ToPILImage()(reflectance.squeeze(0))noise_img = transforms.ToPILImage()(normalize01(noise.squeeze(0)))return res_img, illum_img, adjust_illu_img, reflect_img, noise_imgif __name__ == '__main__':# Init Modelnet = RRDNet()net = net.to(conf.device)# Testimg = Image.open(conf.test_image_path)res_img, illum_img, adjust_illu_img, reflect_img, noise_img = pipline_retinex(net, img)res_img.save('./test/result.jpg')illum_img.save('./test/illumination.jpg')adjust_illu_img.save('./test/adjust_illumination.jpg')reflect_img.save('./test/reflectance.jpg')noise_img.save('./test/noise_map.jpg')

这段代码基本都注释了,就不再详细讲解了~


🚀三、RDDNet代码复现

☀️3.1 环境配置

  • Python 3
  • PyTorch >= 0.4.1
  • PIL >= 6.1.0
  • Opencv-python>=3.4

☀️3.2 运行过程

这个也是运行比较简单,配好环境就行 。不再过多叙述~


☀️3.3 运行效果

没错,你怎么知道我去看邓紫棋演唱会啦~ 

这篇关于【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998812

相关文章

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数