【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)

本文主要是介绍【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少提取特征困难目标识别和定位精度低等问题,给检测带来一定的难度。

     🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。

      ⭐本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。

👑完整代码已打包上传至资源→低照度图像增强代码汇总

目录

前言

🚀一、RDDNet介绍 

☀️1.1 RDDNet简介   

研究背景 

算法框架 

损失函数

🚀二、RDDNet核心代码

 ☀️2.1 网络模型—RRDNet.py

 ☀️2.2 损失函数—loss_functions.py

(1)重构损失——reconstruction_loss

(2)光照损失——illumination_smooth_loss

(3)反射损失——reflectance_smooth_loss

(4)噪声损失——noise_loss

  ☀️2.3 Retinex操作—pipline.py

🚀三、RDDNet代码复现

☀️3.1 环境配置

☀️3.2 运行过程

☀️3.3 运行效果

 

🚀一、RDDNet介绍 

学习资料:

  • 论文题目:《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》(通过鲁棒性 Retinex 分解对曝光不足的图像进行零样本恢复)
  • 论文讲解:ICME| RRDNet《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》论文超详细解读(翻译+精读)
  • 原文地址:Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition | IEEE Conference Publication | IEEE Xplore
  • 源码地址:代码export.arxiv.org/pdf/2109.05838v2.pdf

☀️1.1 RDDNet简介   

RRDNet同济大学在2020年提出来的一种新的三分支全卷积神经网络,认为图像由三部分构成:光照分量反射分量噪声分量。在没有pair对的情况下实现低光图像增强,通过对loss进行迭代来有效估计出噪声和恢复光照。 

研究背景 

  • 曝光不足的图像由于能见度差和黑暗中的潜在噪声,通常会出现严重的质量下降。
  • 现有的图像增强方法忽略了噪声,因此使用带噪声分量的Retinex模型作为基础。
  • 基于学习(数据驱动)的方法限制了模型的泛化能力,因此提出zero-shot的学习模式。

算法框架 

  1. 通过三分支网络把输入图像分解为反射图、光照图和噪声图三个分量。
  2. 通过Gamma变换调整光照图,再计算得到无噪声的反射图。
  3. 结合光照图和反射图,重构得到最终结果。 

损失函数

1. Retinex重构损失,取最大通道值作为初始光照图,用来约束光照图。在光照图的基础上约束反射图和噪声。

2. 纹理增强损失,通过平滑光照图可以帮助增强反射图的纹理。具体损失公式是带有权重的总变分损失,权重的设计规则是,梯度大的地方权重小,即权重与梯度成负相关即可,这里是将梯度经过高斯滤波放在分母。

3. 光照指导的噪声损失,根据噪声随着光照的变大而变大的假设,可以使用光照图来做权重指导,其次考虑两点:

(1)假定噪声范围限定

(2)通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪


🚀二、RDDNet核心代码

 代码框架如图所示:

(图片来源:【代码笔记】RRDNet 网络-CSDN博客 谢谢大佬!@chaiky) 

 ☀️2.1 网络模型—RRDNet.py

import torch
import torch.nn as nnclass RRDNet(nn.Module):def __init__(self):super(RRDNet, self).__init__()#----------- 1.illumination(光照估计)---------------------------#self.illumination_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 1, 3, 1, 1),)#----------- 2.reflectance(反射率估计)---------------------------#self.reflectance_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))#----------- 3.noise(噪声估计)---------------------------#self.noise_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))def forward(self, input):illumination = torch.sigmoid(self.illumination_net(input))reflectance = torch.sigmoid(self.reflectance_net(input))noise = torch.tanh(self.noise_net(input))return illumination, reflectance, noise

  我们可以对照上图左边的结构来理解代码。

  • illumination_net:  主要是负责对输入图像进行处理以获取光照信息,包括一系列卷积层和ReLU激活函数,最终输出一个通道数为1的图像,表示光照强度

  • reflectance_net:  主要是负责提取输入图像的反射率信息,同样包括一系列卷积层和ReLU激活函数,最终输出一个通道数为3的图像,表示反射率在RGB通道上的分布。

  • noise_net:  主要是则用于估计输入图像的噪声信息,同样由一系列卷积层和ReLU激活函数组成,最终输出一个通道数为3的图像,表示噪声在RGB通道上的分布。

 最后,illumination_netreflectance_net的输出经过sigmoid函数处理,而noise_net的输出则经过tanh函数处理。


 ☀️2.2 损失函数—loss_functions.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import conf#----------- 1.reconstruction_loss:计算重构损失---------------------------#
def reconstruction_loss(image, illumination, reflectance, noise):reconstructed_image = illumination*reflectance+noisereturn torch.norm(image-reconstructed_image, 1)#----------- 2.gradient: 计算输入图像在水平和垂直方向上的梯度--------------------#
def gradient(img):height = img.size(2)width = img.size(3)gradient_h = (img[:,:,2:,:]-img[:,:,:height-2,:]).abs()gradient_w = (img[:, :, :, 2:] - img[:, :, :, :width-2]).abs()gradient_h = F.pad(gradient_h, [0, 0, 1, 1], 'replicate')gradient_w = F.pad(gradient_w, [1, 1, 0, 0], 'replicate')gradient2_h = (img[:,:,4:,:]-img[:,:,:height-4,:]).abs()gradient2_w = (img[:, :, :, 4:] - img[:, :, :, :width-4]).abs()gradient2_h = F.pad(gradient2_h, [0, 0, 2, 2], 'replicate')gradient2_w = F.pad(gradient2_w, [2, 2, 0, 0], 'replicate')return gradient_h*gradient2_h, gradient_w*gradient2_w#----------- 3.normalize01: 将输入图像进行归一化到0到1的范围内---------------------#
def normalize01(img):minv = img.min()maxv = img.max()return (img-minv)/(maxv-minv)#----------- 4.gaussianblur3: 3通道的高斯模糊---------------------------#
def gaussianblur3(input):slice1 = F.conv2d(input[:,0,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice2 = F.conv2d(input[:,1,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice3 = F.conv2d(input[:,2,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)x = torch.cat([slice1,slice2, slice3], dim=1)return x#----------- 5.illumination_smooth_loss: 计算光照平滑损失---------------------------#
def illumination_smooth_loss(image, illumination):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]max_rgb, _ = torch.max(image, 1)max_rgb = max_rgb.unsqueeze(1)gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_illu_h, gradient_illu_w = gradient(illumination)weight_h = 1/(F.conv2d(gradient_gray_h, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_w = 1/(F.conv2d(gradient_gray_w, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_h.detach()weight_w.detach()loss_h = weight_h * gradient_illu_hloss_w = weight_w * gradient_illu_wmax_rgb.detach()return loss_h.sum() + loss_w.sum() + torch.norm(illumination-max_rgb, 1)#----------- 6.reflectance_smooth_loss:计算反射率平滑损失---------------------------#
def reflectance_smooth_loss(image, illumination, reflectance):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_reflect_h, gradient_reflect_w = gradient(reflectance)weight = 1/(illumination*gradient_gray_h*gradient_gray_w+0.0001)weight = normalize01(weight)weight.detach()loss_h = weight * gradient_reflect_hloss_w = weight * gradient_reflect_wrefrence_reflect = image/illuminationrefrence_reflect.detach()return loss_h.sum() + loss_w.sum() + conf.reffac*torch.norm(refrence_reflect - reflectance, 1)#----------- 7.noise_loss: 计算噪声损失---------------------------#
def noise_loss(image, illumination, reflectance, noise):weight_illu = illuminationweight_illu.detach()loss = weight_illu*noisereturn torch.norm(loss, 2)
(1)重构损失——reconstruction_loss

图像的分解组件必须满足Robust Retinex的公式,将RGB三个通道中最大强度值S的初始值,在此基础上约束反射图和噪声。

(2)光照损失——illumination_smooth_loss

通过平滑的光照图可以增强暗区域的纹理细节,公式中x和y是水平和垂直方向,Wx和Wy是确保图像平滑的权重参数。

权重与梯度呈反比,梯度大的地方权重小,梯度小的地方权重大,因此将高斯滤波G放在分母,这里公式中的I是输入图像转换成的灰度图,Wy的计算方式和Wx的相同。

(3)反射损失——reflectance_smooth_loss

通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪。

(4)噪声损失——noise_loss

为了增加图像的清晰度增加了图像的对比度,与此同时,图像的噪声也被放大,出于以下两点限制噪声:

  1. 噪声的范围需要被限制。
  2. 噪声可以平滑的反射图限制。


  ☀️2.3 Retinex操作—pipline.py

import os
import numpy as np
import cv2
import torch
import torch.optim as optim
import torch.nn as nn
from PIL import Image
from torchvision import transforms
import torch.nn.init as initfrom model.RRDNet import RRDNet
from loss.loss_functions import reconstruction_loss, illumination_smooth_loss, reflectance_smooth_loss, noise_loss, normalize01
import conf#----------- retinex图像增强---------------------------#
def pipline_retinex(net, img):img_tensor = transforms.ToTensor()(img)  # [c, h, w] #将输入图像转换为张量,并调整形状img_tensor = img_tensor.to(conf.device)img_tensor = img_tensor.unsqueeze(0)     # [1, c, h, w]optimizer = optim.Adam(net.parameters(), lr=conf.lr)# iterations:迭代优化过程for i in range(conf.iterations+1):# forward:通过网络前向传播得到光照、反射率和噪声图像。illumination, reflectance, noise = net(img_tensor)  # [1, c, h, w]# loss computing:计算总损失,并进行反向传播优化网络参数。loss_recons = reconstruction_loss(img_tensor, illumination, reflectance, noise)  # 重构损失loss_illu = illumination_smooth_loss(img_tensor, illumination) # 光照损失loss_reflect = reflectance_smooth_loss(img_tensor, illumination, reflectance) #反射损失loss_noise = noise_loss(img_tensor, illumination, reflectance, noise) # 噪声损失loss = loss_recons + conf.illu_factor*loss_illu + conf.reflect_factor*loss_reflect + conf.noise_factor*loss_noise# backwardnet.zero_grad()loss.backward()optimizer.step()# log:每隔 100 次迭代打印日志,显示重建损失、光照损失、反射率损失和噪声损失的数值。if i%100 == 0:print("iter:", i, '  reconstruction loss:', float(loss_recons.data), '  illumination loss:', float(loss_illu.data), '  reflectance loss:', float(loss_reflect.data), '  noise loss:', float(loss_noise.data))# adjustment:对增强后的图像进行调整adjust_illu = torch.pow(illumination, conf.gamma)res_image = adjust_illu*((img_tensor-noise)/illumination)# 对增强后的图像进行调整res_image = torch.clamp(res_image, min=0, max=1)# 对调整后的图像进行限幅操作,确保像素值在 0 到 1 之间。if conf.device != 'cpu':res_image = res_image.cpu()illumination = illumination.cpu()adjust_illu = adjust_illu.cpu()reflectance = reflectance.cpu()noise = noise.cpu()# 将处理后的张量转换为 PIL 图像res_img = transforms.ToPILImage()(res_image.squeeze(0))illum_img = transforms.ToPILImage()(illumination.squeeze(0))adjust_illu_img = transforms.ToPILImage()(adjust_illu.squeeze(0))reflect_img = transforms.ToPILImage()(reflectance.squeeze(0))noise_img = transforms.ToPILImage()(normalize01(noise.squeeze(0)))return res_img, illum_img, adjust_illu_img, reflect_img, noise_imgif __name__ == '__main__':# Init Modelnet = RRDNet()net = net.to(conf.device)# Testimg = Image.open(conf.test_image_path)res_img, illum_img, adjust_illu_img, reflect_img, noise_img = pipline_retinex(net, img)res_img.save('./test/result.jpg')illum_img.save('./test/illumination.jpg')adjust_illu_img.save('./test/adjust_illumination.jpg')reflect_img.save('./test/reflectance.jpg')noise_img.save('./test/noise_map.jpg')

这段代码基本都注释了,就不再详细讲解了~


🚀三、RDDNet代码复现

☀️3.1 环境配置

  • Python 3
  • PyTorch >= 0.4.1
  • PIL >= 6.1.0
  • Opencv-python>=3.4

☀️3.2 运行过程

这个也是运行比较简单,配好环境就行 。不再过多叙述~


☀️3.3 运行效果

没错,你怎么知道我去看邓紫棋演唱会啦~ 

这篇关于【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998812

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面