SparkCore(10):uv/pv实例

2024-05-24 11:38
文章标签 实例 pv uv sparkcore

本文主要是介绍SparkCore(10):uv/pv实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.统计样例

2013-05-19 13:00:00	http://www.taobao.com/17/?tracker_u=1624169&type=1	B58W48U4WKZCJ5D1T3Z9ZY88RU7QA7B1	http://hao.360.cn/	1.196.34.243	NULL	-1
2013-05-19 13:00:00	http://www.taobao.com/item/962967_14?ref=1_1_52_search.ctg_1	T82C9WBFB1N8EW14YF2E2GY8AC9K5M5P	http://www.yihaodian.com/ctg/s2/c24566-%E5%B1%B1%E6%A5%82%E5%88%B6%E5%93%81?ref=pms_15_78_258	222.78.246.228	134939954	156
2013-05-19 13:00:00	http://www.taobao.com/1/?tracker_u=1013304189&uid=2687512&type=3	W17C89RU8DZ6NMN7JD2ZCBDMX1CQVZ1W	http://www.yihaodian.com/1/?tracker_u=1013304189&uid=2687512&type=3	118.205.0.18	NULL	-20

2.代码

2.1 SparkUtil 

package SparkUtilimport org.apache.spark.{SparkConf, SparkContext}/*** Created by ibf on 2018/7/18.*/
object SparkUtil {def createSparkContext(isLocal:Boolean,appName:String): SparkContext ={if(isLocal) {val conf = new SparkConf().setAppName(appName).setMaster("local[2]")val  sc = SparkContext.getOrCreate(conf)val ssc=SparkContext.getOrCreate(conf)sc}else{val conf = new SparkConf().setAppName(appName)val sc = SparkContext.getOrCreate(conf)sc}}}

 

2.2 SparkPVAndUV 

package _0722rddimport SparkUtil.SparkUtil
import org.apache.spark.rdd.RDD/*** */
object SparkPVAndUV {def main(args: Array[String]) {val sc = SparkUtil.createSparkContext(true,"SparkPVAndUV")
//    val path = "hdfs://192.168.244.101:8020/page_views.data"val path = "hdfs://192.168.31.3:8020/page_views.data"val originalRdd: RDD[String] = sc.textFile(path)//因为缓存不是立即操作的api,只有当调用了这块缓存的数据才会cacheoriginalRdd.cache()//originalRdd.count()//某些固定的值,应该要写在配置中,然后通过读取配置来获取val arrLen = 7val timeLen = 16//处理过后的rddval mappedRdd: RDD[(String, String, String)] = originalRdd.map(_.split("\t")).filter(arr =>{arr.length == arrLen && arr(0).trim.length > timeLen && arr(1).length > 0}).map(arr =>{//每分钟的pvval date = arr(0).substring(0,16)val url = arr(1).trimval guid = arr(2).trim(date,url,guid)})mappedRdd.cache()mappedRdd.count()//一、计算PV/*** 其实计算pv只要维度(date)和url*///XXXByKey的操作是针对于PairRdd(二元组rdd)才能实现的,val resultRdd = mappedRdd.map(t => (t._1,t._2)).groupByKey().map {//date就是日期,itr是迭代器,里面把相同日期的value全部放到一起case (date, itr) => {(date, itr.size)}}//resultRdd结果:Array[(String, Int)] = Array((2013-05-19 13:35,3504))//    resultRdd.foreach(println)//思考:groupByKey这样的API,有没有什么其他API可以实现这个功能,他们之间的性能比较//这段代码有哪些地方是可以优化的/*** 优化groupByKey: grouByKey 这个api性能不是特别好*      会把相同key的所有数据全部放到同一个迭代器中,数据倾斜*      API可以替换,*      是否可以不保留url的值,直接写1,然后用于后面的count*///def reduceByKey(func: (V, V) => V, numPartitions: Int)/*** 这里有一个numPartitions可以指定,分区数量* executor 5 个core  就可以并行计算5个分区的数据* 当数量大的时候,甚至出现数据倾斜的时候,可以通过增加分区数量来缓解每个task的计算压力*/val pvRdd = mappedRdd.map(t => (t._1,1))    //mappedRdd.map(t => (t._1,1))为Array[(String, Int)] = Array((2013-05-19 13:00,1), (2013-05-19 13:00,1)).reduceByKey(_ + _,5)pvRdd.foreach(println)    //结果是Array((2013-05-19 13:07,3486), (2013-05-19 13:16,3395))Thread.sleep(100000l)originalRdd.unpersist()mappedRdd.unpersist()//=================================================================================================//二、计算uv/*** uv应该如何计算?count  distinct   groupby(XXX,xxx)* select count(distinct XXX) as uv from XX group by XXX* select count(1) from (select XXX from group by xxx ) tb* 在什么场景下应该用哪一种呢* key较为分散的情况下使用groupByKey, key较为集中的情况下使用reduceByKey*//**方法一**//* val uvRdd = mappedRdd.filter(t => t._3.nonEmpty).map(t => {//把什么作为key然后进行聚合,每分钟的uv(t._1,t._3)}).groupByKey().map({case (date,itr) =>{(date,itr.toSet.size)}})*//**方法二:是否可以使用reduceByKey来做去重呢?* 我只想知道在同一个时间段内出现了多少key,key出现的次数,并不不关注* spark rdd的api的时候,要关注,你的key是什么?*///(date,url,uid)val uvRdd = mappedRdd.filter(t => t._3.nonEmpty)//((date,uid),1) 下面这个是去重操作.map(t => ((t._1,t._3),1)).reduceByKey({case (a,b) => a})//进行第二次聚合  ((13:01,uid1),1),((13:01,uid2),1),((13:01,uid3),1)//想要得到(13:01,3).map({case ((date,uid),int) =>{(date,1)}}).reduceByKey(_ + _)/*** 方法三:spark常用去重API*//*    val uvRdd = mappedRdd.filter(t => t._3.nonEmpty).map(t => (t._1,t._3)).distinct(10).map(t =>(t._1,1)).reduceByKey(_ + _)*///uvRdd.foreach(println)//使用外联,计算出值的就保留值,没计算出来的就给定默认值-1/*** select date,* (case when pv is not null*  then pv*  else*  -1) as pv,*  (case when uv is not null*  then uv*  else*  -1) as uv from (select date,pv from A full join B on A.date = B.date) tb*/
//    val resultRdd: RDD[(String, Int, Int)] = pvRdd.fullOuterJoin(uvRdd)
//        .map({
//      case(date,(optpv,optuv)) =>{
//        (date,optpv.getOrElse(-1),optuv.getOrElse(-1))
//      }
//    }).coalesce(1)
//    resultRdd.foreach(println)//==================================================================================
//================输出==============================================================
//    resultRdd.foreach(println)
//    resultRdd.saveAsTextFile(s"hdfs://192.168.244.101:8020/" +
//      s"spark/sparkPVUV_${System.currentTimeMillis()}")//    Thread.sleep(100000l)//    originalRdd.unpersist()
//    mappedRdd.unpersist()Thread.sleep(100000000l)}
}

 

这篇关于SparkCore(10):uv/pv实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998301

相关文章

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Spring 中使用反射创建 Bean 实例的几种方式

《Spring中使用反射创建Bean实例的几种方式》文章介绍了在Spring框架中如何使用反射来创建Bean实例,包括使用Class.newInstance()、Constructor.newI... 目录1. 使用 Class.newInstance() (仅限无参构造函数):2. 使用 Construc

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

mysqld_multi在Linux服务器上运行多个MySQL实例

《mysqld_multi在Linux服务器上运行多个MySQL实例》在Linux系统上使用mysqld_multi来启动和管理多个MySQL实例是一种常见的做法,这种方式允许你在同一台机器上运行多个... 目录1. 安装mysql2. 配置文件示例配置文件3. 创建数据目录4. 启动和管理实例启动所有实例

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni