LRU(Least Recently Used)算法原理

2024-05-24 11:12

本文主要是介绍LRU(Least Recently Used)算法原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LRU(Least Recently Used)算法原理

一、简介

LRU(Least Recently Used)算法是一种常用的缓存淘汰策略,用于管理计算机系统中的缓存。当缓存满时,需要根据一定的策略淘汰掉一些数据,以便为新的数据腾出空间。LRU 算法的基本思想是:最近最少使用的数据最有可能在未来一段时间内不再被使用,因此应该优先淘汰这些数据。

二、原理概述

LRU 算法的核心是维护一个有序的数据结构,按照数据被访问的时间顺序排列。当缓存满时,移除最久未被访问的数据。LRU 算法可以通过多种数据结构实现,常见的有链表和哈希表结合的数据结构。

三、实现方法

3.1 链表实现

  • 使用一个双向链表存储缓存数据,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,将该数据移动到链表头部。
  • 当缓存满时,移除链表尾部的数据。

3.2 链表实现哈希表+双向链表实现

  • 使用哈希表存储缓存中的数据,以便快速查找。
  • 使用双向链表维护访问顺序,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,通过哈希表定位到链表中的节点,并将该节点移动到链表头部。
  • 当缓存满时,移除链表尾部的节点,并在哈希表中删除相应的条目。

四、示例代码

以下是使用哈希表和双向链表实现 LRU 缓存的示例代码:

import java.util.HashMap;class LRUCache {private class Node {int key, value;Node prev, next;Node(int key, int value) {this.key = key;this.value = value;}}private final int capacity;private HashMap<Integer, Node> map;private Node head, tail;public LRUCache(int capacity) {this.capacity = capacity;map = new HashMap<>();head = new Node(0, 0);tail = new Node(0, 0);head.next = tail;tail.prev = head;}public int get(int key) {if (map.containsKey(key)) {Node node = map.get(key);remove(node);insertToHead(node);return node.value;} else {return -1;}}public void put(int key, int value) {if (map.containsKey(key)) {Node node = map.get(key);remove(node);} else if (map.size() == capacity) {map.remove(tail.prev.key);remove(tail.prev);}Node node = new Node(key, value);insertToHead(node);map.put(key, node);}private void remove(Node node) {node.prev.next = node.next;node.next.prev = node.prev;}private void insertToHead(Node node) {node.next = head.next;node.prev = head;head.next.prev = node;head.next = node;}
}

4.1 类定义和成员变量

  • LRUCache 类定义了 LRU 缓存。
  • Node 内部类用于表示双向链表的节点,包含缓存的 key 和 value 以及指向前后节点的指针 prev 和 next。
  • capacity 是缓存的最大容量。
  • map 是哈希表,用于快速查找缓存中的节点。
  • head 和 tail 是双向链表的虚拟头尾节点,方便对链表进行操作。

4.2 构造函数

  • 初始化缓存的容量 capacity。
  • 初始化哈希表 map。
  • 初始化双向链表的虚拟头节点 head 和虚拟尾节点 tail,并将它们连接起来,形成一个空的双向链表。

4.3 获取缓存值

  • get 方法用于获取缓存中的值。
  • 如果 key 存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除,并调用 insertToHead 方法将节点插入链表头部,表示最近使用,然后返回节点的 value。
  • 如果 key 不存在于哈希表中,返回 -1。

4.4 放入缓存值

  • put 方法用于在缓存中插入或更新一个值。
  • 如果 key 已存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除。
  • 如果 key 不存在并且缓存已满,从哈希表中移除最久未使用的节点(即链表尾部节点 tail.prev),并调用 remove 方法将链表尾部节点移除。
  • 创建新的节点 node,调用 insertToHead 方法将新节点插入链表头部,并将新节点添加到哈希表 map 中。

4.5 移除节点

  • remove 方法用于从双向链表中移除一个节点 node。通过调整节点的前后指针,将 node 从链表中断开。

4.6 插入节点到链表头部

  • insertToHead 方法用于将一个节点 node 插入到双向链表的头部。通过调整指针,将 node 插入到虚拟头节点 head 和原第一个节点之间。

五、性能分析

  • 时间复杂度:LRU 缓存的 get 和 put 操作的时间复杂度都是 O(1),因为哈希表的查找和链表的插入/删除操作都是常数时间复杂度。
  • 空间复杂度:空间复杂度是 O(n),其中 n 是缓存的容量。哈希表和链表的空间开销与缓存的容量成线性关系。

六、优缺点

  • 优点
    • LRU 算法简单易实现。
    • 能够较好地淘汰不常使用的数据,提高缓存的命中率。
  • 缺点
    • 在高并发场景下,链表操作可能会成为性能瓶颈。
    • 维护链表的操作会带来一定的开销。

七、实际应用

LRU 算法广泛应用于各类缓存系统,如操作系统的页面置换、数据库的缓存机制、浏览器的缓存管理等。它有效地提高了系统的性能和资源利用率,是缓存淘汰策略中的经典算法之一。

总结

LRU 算法通过淘汰最近最少使用的数据,维护了缓存的高效性。通过哈希表和双向链表的结合,实现了 O(1) 时间复杂度的缓存操作。尽管在高并发场景下可能存在性能瓶颈,但 LRU 算法仍然是实际应用中最为常用和有效的缓存淘汰策略之一。

这篇关于LRU(Least Recently Used)算法原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998241

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、