Android从源码分析一:Looper,Handler消息机制

2024-05-24 07:18

本文主要是介绍Android从源码分析一:Looper,Handler消息机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,大家都知道Android中只能在主线程中做UI处理,当涉及到子线程中更新UI的处理时,就需要一个消息机制把子线程的消息发送到UI线程,这个时候Handler就腾空出世、闪亮登场,来做这个消息的搬运工!
我们来看Handler一般的用法:

Handler myHandler = new Handler() {  // 子类必须重写此方法,接受数据 public void handleMessage(Message msg) {   switch (msg.what) {   //做接受到消息后处理(比如说UI更新)。}   super.handleMessage(msg);   }   };  //子线程里使用Handler发送消息class MyThread implements Runnable { public void run() { try { Thread。sleep(10000); } catch (InterruptedException e) { // TODO Auto-generated catch block e。printStackTrace(); }            Message msg = new Message(); Bundle b = new Bundle();// 存放数据 b.putString("color""我的"); msg.setData(b); myHandler.sendMessage(msg); //向Handler发送消息,更新UI } } 
当然发送消息的方式有send系列(sendEmptyMessage(int), sendMessage(Message),sendMessageAtTime(Message,long),sendMessageDelayed(Message, long)>和post( post(Runnable), postAtTime(Runnable, long), postDelayed(Runnable, long))系列。

下面我们来一步一步的通过源码来解读整个消息的发送和接受的过程。
1、Looper
首先我们还要提一个东西:消息怎么产生的?这里我们要谈一下Looper.有人形象的把它称之为消息泵,不断地从MessageQueue中抽取Message执行。一个MessageQueue需要一个Looper。

对于Looper主要是prepare()和loop()两个方法。
首先看prepare()方法

 private static void prepare(boolean quitAllowed) {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(quitAllowed));}

sThreadLocal是一个ThreadLocal对象,可以在一个线程中存储变量。可以看出Looper.prepare()方法不能被调用两次,同时也保证了一个线程中只有一个Looper实例~否则会抛出异常.

下面是Looper的构造方法:

 private Looper(boolean quitAllowed) {mQueue = new MessageQueue(quitAllowed);mThread = Thread.currentThread();}

在构造方法中,创建了一个MessageQueue(消息队列)。
然后我们看loop()方法:

 /*** Run the message queue in this thread. Be sure to call* {@link #quit()} to end the loop.*/public static void loop() {//方法直接返回了sThreadLocal存储的Looper实例,如果me为null则抛出异常,也就是说looper方法必须在prepare方法之后运行。final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}//拿到Looper里面的mQueue。final MessageQueue queue = me.mQueue;// Make sure the identity of this thread is that of the local process,// and keep track of what that identity token actually is.Binder.clearCallingIdentity();final long ident = Binder.clearCallingIdentity();
//重头戏来了!进入死循环。for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// 取出一条消息,如果没有消息则阻塞。return;}// This must be in a local variable, in case a UI event sets the loggerPrinter logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}//把消息交给msg的target的dispatchMessage方法去处理,据说target就是Handler。msg.target.dispatchMessage(msg);if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}// Make sure that during the course of dispatching the// identity of the thread wasn't corrupted.final long newIdent = Binder.clearCallingIdentity();if (ident != newIdent) {Log.wtf(TAG, "Thread identity changed from 0x"+ Long.toHexString(ident) + " to 0x"+ Long.toHexString(newIdent) + " while dispatching to "+ msg.target.getClass().getName() + " "+ msg.callback + " what=" + msg.what);}//释放资源。msg.recycleUnchecked();}}

总而言之:Looper类用来为一个线程开启一个消息循环:
先调用prepare(),与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue。
然后调用loop(),不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理。
好了,现在消息有了,队列也排好了。就缺一个发送消息的对象了。Handler来也!
2、Handler
我们先来看一下它的构造方法:

public Handler(Callback callback, boolean async) {if (FIND_POTENTIAL_LEAKS) {final Class<? extends Handler> klass = getClass();if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&(klass.getModifiers() & Modifier.STATIC) == 0) {Log.w(TAG, "The following Handler class should be static or leaks might occur: " +klass.getCanonicalName());}}
//获得mLooper对象,通过它获取保存了的MessageQueue(消息队列)。mLooper = Looper.myLooper();if (mLooper == null) {throw new RuntimeException("Can't create handler inside thread that has not called Looper.prepare()");}mQueue = mLooper.mQueue;mCallback = callback;mAsynchronous = async;}

通过 Looper.myLooper();获得mLooper对象,然后又通过mLooper.mQueue获得了mLooper保存的消息队列,这样就保证了Handler与Looper实例中的MessageQueue关联上了。
然后看我们的sendMessage()是怎样发送消息的?
我们从源码中看到,

        sendMessage-->sendEmptyMessageDelayed-->sendMessageDelayed-->sendMessageAtTime:public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

几次调用之后,最终通过sendMessageAtTime()方法内部构建了一个新的MessageQueue ,并且将其与传过来的Message一起调用了enqueueMessage()方法,我们再来看:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {//把Handler对象作为Looper里面的msg.target;并将msg通过MessageQueue类放到消息队列里面。最终把这个消息发送出去。msg.target = this;if (mAsynchronous) {msg.setAsynchronous(true);}return queue.enqueueMessage(msg, uptimeMillis);}

如果大家有心,应该会记得Looper里面的loop()方法中的无限循环里面的

 msg.target.dispatchMessage(msg);//最终Looper交给msg.target去处理,

而今,handler里面将msg.targer赋值为this;也就是把当前的handler作为msg的target属性。最终会调用MessageQueue 的enqueueMessage的方法,也就是说handler发出的消息,最终会保存到消息队列中去!
现在已经很清楚了,就是Looper会调用perpare和loop方法,在当前执行的线程中保存一个Looper实例,并且这个实例会保存一个MessageQueue对象,然后当前线程进入无限循环当中,不断从MessageQueue中读取msg.target也就是Handler发送过来的消息。接下来我们就看Handler是如何接收的:刚刚说到了

      msg.target.dispatchMessage(msg);//处理/**接下来我们看这个函数是如何处理的:* Handle system messages here.*/public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}

无论如何最终都调用了handleMessage();
下面我们来看一下handleMesssage()这个方法:

/*** Subclasses must implement this to receive messages.*/public void handleMessage(Message msg) {}

空的,上面的注释是说,子类必须重写这个方法来接收消息。所以知道我们为啥写Handler的时候都要重写handleMessage()方法了吧!

这篇关于Android从源码分析一:Looper,Handler消息机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997737

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重