OpenSSL之API编程 - C/C++实现AES、DES、3DES、SM4对称加密算法

2024-05-24 04:52

本文主要是介绍OpenSSL之API编程 - C/C++实现AES、DES、3DES、SM4对称加密算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章介绍

  • 本文章介绍了OpenSSL计算对称加解密算法(AES、DES、3DES、SM4等)的相关接口,并使用C语言实现了AES和SM4加解密。

对称加解密算法

  • 对称加密与非对称加密算法

OpenSSL介绍

  • openssl是一个功能丰富且自包含的开源安全工具箱。它提供的主要功能有:SSL协议实现、对称/非对称加密算法、大数运算、非对称算法密钥生成、ASN.1编解码库、证书请求(PKCS10)编解码、数字证书编解码、CRL编解码、OCSP协议、数字证书验证、PKCS7标准实现和PKCS12个人数字证书格式实现等功能。
  • openssl采用C语言作为开发语言,这使得它具有优秀的跨平台性能。openssl支持Linux、UNIX、windows、Mac等平台。
  • github源码地址
  • openssl_1.1.1u工程: 不知道如何集成Openssl工程的话, 可以下载我集成好的测试工程使用。

相关API

  • EVP_CIPHER_CTX_new

    •   /**  @brief  创建加解密算法上下文*  @return 成功: 返回一个指向新分配的 EVP_CIPHER_CTX 结构体的指针*          失败: 返回NULL*/EVP_CIPHER_CTX *EVP_CIPHER_CTX_new();
      
  • EVP_EncryptInit_ex

    •   /**  @brief  初始化一个加密上下文*  @param  [IN]  ctx   EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [IN]  cipher  加密算法类型, 常用的有以下几种*                           AES算法*                               EVP_aes_128_ecb() *                               EVP_aes_256_ecb() *                               EVP_aes_128_cbc() *                               EVP_aes_256_cbc()*                           *                           DES算法*                               EVP_des_ecb()*                               EVP_des_cbc()**                           3DES算法*                               EVP_des_ede3_ecb()*                               EVP_des_ede3_cbc() **                           SM4算法*                               EVP_sm4_ecb() *                               EVP_sm4_cbc()       *  @param  [IN]  impl  用于指定一个特定的加密引擎实现, 通常设置为NULL*  @param  [IN]  key   加密密钥*                           AES算法 - AES算法支持16个字节、24个字节以及32个字节的密钥长度。*                                   - 根据选择的不同加密算法传入不同的密钥长度*                           DES算法  - 长度8个字节*                           3DES算法 - 长度为24个字节*                           SM4算法  - 长度为16个字节*  @param  [IN]  iv    初始化向量, ecb模式不需要指定,可传入NULL*                           AES算法  - 长度为16个字节*                           DES算法  - 长度8个字节*                           3DES算法 - 长度为8个字节*                           SM4算法  - 长度为16个字节*  @return 成功返回1*/int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl,const unsigned char *key, const unsigned char *iv);
      
  • EVP_EncryptUpdate

    •   /**  @brief  分块加密*  @param  [IN]   ctx   EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [OUT]  out   加密后的数据*  @param  [OUT]  outl  加密后的数据长度*  @param  [IN]   in    原始数据*  @param  [IN]   inl   原始数据长度*  @return 成功返回1         */int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl);
      
  • EVP_EncryptFinal_ex

    •   /**  @brief  完成加密过程的最后阶段*  @param  [IN]   ctx   EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [OUT]  out   加密后的数据*  @param  [OUT]  outl  加密后的数据长度*  @return 成功返回1         */int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
      
  • EVP_DecryptInit_ex

    •       /**  @brief  初始化一个解密上下文。参数详细说明参考 EVP_EncryptInit_ex 接口*  @param  [IN]  ctx     EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [IN]  cipher  解密算法类型      *  @param  [IN]  impl    用于指定一个特定的解密引擎实现, 通常设置为NULL*  @param  [IN]  key     解密密钥*  @param  [IN]  iv      初始化向量, ecb模式不需要指定,可传入NULL*  @return 成功返回1*/int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl,const unsigned char *key, const unsigned char *iv);
      
  • EVP_DecryptUpdate

    •   /**  @brief  分块解密*  @param  [IN]   ctx   EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [OUT]  out   解后的数据*  @param  [OUT]  outl  解密后的数据长度*  @param  [IN]   in    需要解密的密文数据*  @param  [IN]   inl   需要解密的密文数据长度*  @return 成功返回1         */int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl);
      
  • EVP_DecryptFinal_ex

    •   /**  @brief  完成解密过程的最后阶段*  @param  [IN]   ctx   EVP_CIPHER_CTX_new 接口创建的上下文*  @param  [OUT]  out   解密后的数据*  @param  [OUT]  outl  解密后的数据长度*  @return 成功返回1         */int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
      
  • EVP_CIPHER_CTX_free

    •   /**  @brief  释放加解密算法上下文*  @param  [IN]   ctx   EVP_CIPHER_CTX_new 接口创建的上下文*/void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
      

代码示例

  • AES、DES、3DES、SM4加解密使用的是同一套API,这里只演示了AES和SM4加解密,其它算法参考API接口自己实现即可。

AES加解密

  •   #include <openssl/evp.h>#include <stdio.h>#include <string.h>int main(){EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new();if (ctx == NULL){printf("EVP_CIPHER_CTX_new failed.\n");return -1;}//加密算法初始化char* key = "1234567812345678";char* ivec = "abcdefghabcdefgh";	if(EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, (const unsigned char*)key, (const unsigned char*)ivec) != 1){printf("EVP_EncryptInit_ex failed.\n");return -1;}	int encDataLen = 0;int encDataLenTemp = 0;//加密操作char* srcData = "hello world";unsigned char encData[1024] = { 0 };if(EVP_EncryptUpdate(ctx, encData, &encDataLen, (const unsigned char*)srcData, strlen((char*)srcData)) != 1){printf("EVP_EncryptUpdate failed.\n");return -1;}//结束加密操作if(EVP_EncryptFinal_ex(ctx, encData + encDataLen, &encDataLenTemp) != 1){printf("EVP_EncryptFinal_ex failed.\n");return -1;}encDataLen += encDataLenTemp;// 16进制格式打印加密数据for(int i = 0; i < encDataLen; i++){printf("%.02x", encData[i]);}printf("\n");// 解密算法初始化if(EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, (const unsigned char*)key, (const unsigned char*)ivec) != 1){printf("EVP_DecryptInit_ex failed.\n");return -1;}int outlen = 0;unsigned char decData[1024] = { 0 };int decDataLen = 0;int decDataLenTemp = 0;//解密操作if(EVP_DecryptUpdate(ctx, decData, &decDataLen, encData, encDataLen) != 1){printf("EVP_DecryptUpdate failed.\n");return -1;}//结束解密操作if(EVP_DecryptFinal_ex(ctx, decData + decDataLen, &decDataLenTemp) != 1){printf("EVP_DecryptFinal_ex failed.\n");return -1;}decDataLen += decDataLenTemp;decData[decDataLen] = '\0';printf("decData = %s\n", decData);EVP_CIPHER_CTX_free(ctx);	return 0;}
    

SM4加解密

  •   #include <openssl/evp.h>#include <stdio.h>#include <string.h>int main(){EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new();if (ctx == NULL){printf("EVP_CIPHER_CTX_new failed.\n");return -1;}//加密算法初始化char* key = "1234567812345678";char* ivec = "abcdefghabcdefgh";	if(EVP_EncryptInit_ex(ctx, EVP_sm4_cbc(), NULL, (const unsigned char*)key, (const unsigned char*)ivec) != 1){printf("EVP_EncryptInit_ex failed.\n");return -1;}	int encDataLen = 0;int encDataLenTemp = 0;//加密操作char* srcData = "hello world";unsigned char encData[1024] = { 0 };if(EVP_EncryptUpdate(ctx, encData, &encDataLen, (const unsigned char*)srcData, strlen((char*)srcData)) != 1){printf("EVP_EncryptUpdate failed.\n");return -1;}//结束加密操作if(EVP_EncryptFinal_ex(ctx, encData + encDataLen, &encDataLenTemp) != 1){printf("EVP_EncryptFinal_ex failed.\n");return -1;}encDataLen += encDataLenTemp;// 16进制格式打印加密数据for(int i = 0; i < encDataLen; i++){printf("%.02x", encData[i]);}printf("\n");// 解密算法初始化if(EVP_DecryptInit_ex(ctx, EVP_sm4_cbc(), NULL, (const unsigned char*)key, (const unsigned char*)ivec) != 1){printf("EVP_DecryptInit_ex failed.\n");return -1;}int outlen = 0;unsigned char decData[1024] = { 0 };int decDataLen = 0;int decDataLenTemp = 0;//解密操作if(EVP_DecryptUpdate(ctx, decData, &decDataLen, encData, encDataLen) != 1){printf("EVP_DecryptUpdate failed.\n");return -1;}//结束解密操作if(EVP_DecryptFinal_ex(ctx, decData + decDataLen, &decDataLenTemp) != 1){printf("EVP_DecryptFinal_ex failed.\n");return -1;}decDataLen += decDataLenTemp;decData[decDataLen] = '\0';printf("decData = %s\n", decData);EVP_CIPHER_CTX_free(ctx);	return 0;}
    

这篇关于OpenSSL之API编程 - C/C++实现AES、DES、3DES、SM4对称加密算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997429

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函