OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码)

2024-05-24 04:20

本文主要是介绍OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.前言

2.主控逻辑

3.Matlab

4.verilog

5.ModelSim

6.ModelSim仿真结构与Matlab自动化对比


完整工程链接(含verilog和Matlab代码)

https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirecticon-default.png?t=N7T8https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirect 

1.前言

  对于发射部分的OFDM 802.11a的FPGA实现,已经接近闻声了,现在是万事俱备只欠东风,所有功能模块已经设计完成,目前还需要一个主控模块,其作用是:
(1)与MAC通信进行数据交互;
(2)控制一包发射数据按照PPDU帧结构的顺序进行发送。

  下面这两张图一直放出来,不觉得厌烦,这是协议的核心。

PPDU帧结构

PPDU帧结构

PPDU帧结构

PPDU帧结构

2.主控逻辑

  由于最终生成的OFDM符号有着严格的格式与时序要求,并且各个功能模块的处理延迟也能保持稳定,因此主控单元MCU需要对数据流向实现控制功能。另外,每次发射处理都是由MAC层,收到物理层传输完成信号,所发起的,且需要传输大量数据,以及配置信息,所以MCU与MAC层之间的通信也采用AXI Stream协议。

  当MCU收到MAC层发来的start信号后,对发射各模块硬件进行复位,并且接收参数配置信息。MAC层发来参数配置是21位信号,其中包含的是待发射PSDU帧长(LENGTH,12bits)、发射速率(RATE,6bits)和发射功率等级(TXPWR,3bits)三个发射参数。

  接收到参数配置信息,送往tx_gen_pkt_sig模块,生成signal域数据帧,并以字节形式输出。不清楚的,回顾之前的文章:OFDM 802.11a的FPGA实现(十九)signal域帧生成(含代码)

  复位之后,通过AXI Stream协议,向MAC层接收要发送的字节数据,并且控制训练序列开始输出。不清楚的,回顾之前的文章:OFDM 802.11a的FPGA实现(十七)PLCP的前导部分:长短训练序列组合加窗(含代码)

  复位之后,加载扰码器的初始状态。不清楚的,回顾之前的文章:OFDM802.11a的FPGA实现(四)扰码

  无论是signal域数据帧,还是MAC传来的待发送字节,都要送往并串转换模块,最终以bit的形式输出。MCU模块控制signal域数据帧,最先送往并串转换模块,接着MAC传来的待发送字节再送。

  TxPWR为发射功率等级,输出给后面的DAC使用。

  当一包数据发送完成,MCU模块接收到指令后,给MAC送去准备好信号,mcu_config_dout_rdy。

  tx_mcu模块输出依次连接扰码、卷积编码、删余、一级交织、二级交织、调制映射、插入导频、ifft、DAC模块(此模块后面一章节进行设计)。如下图所示:

连接方式

连接方式

  DAC模块,主要是将时域的输出按照前导码、signal帧、data域的顺序进行排列,将数据速率从125M的突发形式,转换为20M的连续形式,然后送往硬件DAC输出模拟信号。这个模块后面一个章节再来讲解设计。

3.Matlab

  matlab生成signal帧数据代码如下:

%% signal帧数据生成 
%RATE = [R1 R2 R3 R4] 字段
tx_rate = 48 * M * code_rate / 12 /4;
switch(tx_rate)case 6RATE = [1 1 0 1];case 9RATE = [1 1 1 1];case 12RATE = [0 1 0 1];case 18RATE = [0 1 1 1];case 24RATE = [1 0 0 1];case 36RATE = [1 0 1 1];case 48RATE = [0 0 0 1];case 54RATE = [0 0 1 1];otherwisedisp('tx_rate_error');
end
%保留位
R = 0;
%LENGTH字段:LSB-MSB(bit5-16)
byte_len = dec2bin(leng_num_in/8,12);
for m = 1:12LENGTH(12-m+1) = str2num(byte_len(m)); 
end
%偶校验位
EVEN_PARITY = mod(sum([RATE,R,LENGTH]),2);
%尾bit
TAIL = [0 0 0 0 0 0];
%组帧
signal_preamble = [RATE,R,LENGTH,EVEN_PARITY,TAIL];

4.verilog

发射主控模块

发射主控模块

`timescale 1ns / 1ps
module tx_mcu(input       clk     ,input      rst_n    ,//MAC层发来参数配置,21位信号,其中包含的是待发射PSDU帧长(LENGTH,12bits)、//发射速率(RATE,6bits)和发射功率等级(TXPWR,3bits)三个发射参数。input       [20:0]        mcu_config_din  ,input                 mcu_config_din_vld ,input                 mcu_config_din_start,output reg     mcu_config_dout_rdy ,//MAC层发来的信息byteinput  [7:0]   mcu_mac_din   ,input      mcu_mac_din_vld  ,output      mcu_mac_dout_rdy ,//输出信息串行bit流input      mcu_din_rdy   ,output      mcu_dout   ,output      mcu_dout_vld  ,output      mcu_dout_sig_flag ,output  [3:0]   mcu_dout_rate_con ,//扰码器初始值配置output  reg [6:0]     mcu_dout_scram_seed , //扰码器初始状态output  reg              mcu_dout_scram_load ,//物理层硬件软复位output reg     phy_rst_n   ,//输入一包数据发送完成信号input      tx_end    ,      //输出发射功率等级output  [2:0]   TxPWR    
);parameter  SEED = 7'b1011101;
//signal
wire [ 5:0] sig_din_tx_rate  ;
wire [11:0] sig_din_tx_length;
wire   sig_din_vld   ;
wire   sig_din_rdy   ;
wire [7:0] sig_dout   ;
wire   sig_dout_vld  ;
wire   sig_dout_rdy  ;
wire [3:0] sig_dout_rate_con;
wire   sig_dout_last  ;
wire   sig_dout_sig_flag;
//连接并-串
wire [7:0] P2S_din    ;
wire   P2S_din_vld   ;
wire   P2S_din_rdy   ;
wire   P2S_dout   ;
wire   P2S_dout_vld  ;
wire   P2S_dout_rdy  ;
//MAC层发来传输信号mcu_config_din_start后,对硬件复位
always@(posedge clk or negedge rst_n)beginif(!rst_n)phy_rst_n <= 1'b1;else if(mcu_config_din_start)phy_rst_n <= 1'b0;elsephy_rst_n <= 1'b1;
end
//发完一包数据后,准备好再次向MAC层接收数据
always@(posedge clk or negedge rst_n)beginif(!rst_n)mcu_config_dout_rdy <= 1'b1;else if(tx_end)mcu_config_dout_rdy <= 1'b1;elsemcu_config_dout_rdy <= 1'b0;
end
//生成signal数据帧结构
assign sig_din_tx_rate = mcu_config_din[8:3]; 
assign  sig_din_tx_length = mcu_config_din[20:9];
assign  TxPWR = mcu_config_din[2:0];
assign  sig_din_vld = mcu_config_din_vld;
//assign sig_dout_rdy = mcu_config_dout_rdy;
assign sig_din_rdy = sig_dout_sig_flag ? P2S_dout_rdy : 1'b0;tx_gen_pkt_sig u_tx_gen_pkt_sig(.clk    (clk    ),.rst_n    (rst_n    ),.sig_din_tx_rate (sig_din_tx_rate ),.sig_din_tx_length (sig_din_tx_length ),.sig_din_vld  (sig_din_vld  ),.sig_din_rdy  (sig_din_rdy  ),.sig_dout   (sig_dout   ),.sig_dout_vld  (sig_dout_vld  ),.sig_dout_rdy  (sig_dout_rdy  ),.sig_dout_rate_con (sig_dout_rate_con ),.sig_dout_last  (sig_dout_last  ),.sig_dout_sig_flag (sig_dout_sig_flag )
);assign mcu_dout_rate_con = sig_dout_rate_con; 
assign mcu_dout_sig_flag = sig_dout_sig_flag;assign P2S_din = sig_dout_sig_flag ? {sig_dout[0],sig_dout[1],sig_dout[2],sig_dout[3],sig_dout[4],sig_dout[5],sig_dout[6],sig_dout[7]} : mcu_mac_din;
assign P2S_din_vld = sig_dout_sig_flag ? sig_dout_vld : mcu_mac_din_vld;
assign P2S_din_rdy = mcu_din_rdy;Par2Ser #( .WIDTH  (4'd8),.LSB_FIRST (1'b1))
Par2Ser_u2(.clk  (clk   ),.rst_n  (rst_n   ),.din  (P2S_din  ),.din_vld (P2S_din_vld ),.din_rdy (P2S_din_rdy ),.dout  (P2S_dout  ),.dout_vld (P2S_dout_vld ),.dout_rdy   (P2S_dout_rdy   )
);assign mcu_dout = P2S_dout;
assign mcu_dout_vld = P2S_dout_vld;
assign mcu_mac_dout_rdy = P2S_dout_rdy;
//扰码器初始值配置
always@(posedge clk or negedge rst_n)beginif(!rst_n)beginmcu_dout_scram_load <= 1'b0;mcu_dout_scram_seed <= 'd0;endelse beginmcu_dout_scram_load <= ~phy_rst_n;mcu_dout_scram_seed <= SEED;end
endendmodule

5.ModelSim

  等最后一个DAC模块设计完成再一起进行整个发射部分联调,现在先对MUC模块进行简单测试,粗略查看下控制时序是否正确,以及输出signal的数据是否能对应上matlab生成的。testbench测试逻辑部分如下:

always@(posedge clk or negedge rst_n)if(!rst_n)mcu_config_din_start <= 1'b0;else if(mcu_config_dout_rdy)mcu_config_din_start <= 1'b1;elsemcu_config_din_start <= 1'b0;always@(posedge clk or negedge rst_n)if(!rst_n)beginmcu_config_din <= 'd0;mcu_config_din_vld <= 1'b0;endelse if(mcu_config_din_start)beginmcu_config_din <= {LEGENTH,6'd36,3'd0};mcu_config_din_vld <= 1'b1;endelsemcu_config_din_vld <= 1'b0;assign mcu_mac_din = P2S_din;
assign mcu_mac_din_vld = P2S_din_vld;
assign mcu_din_rdy = P2S_din_rdy;
assign tx_end = cnt_last; tx_mcu u_tx_mcu(.clk     (clk     ),.rst_n     (rst_n     ),.mcu_config_din      (mcu_config_din   ),.mcu_config_din_vld     (mcu_config_din_vld  ),.mcu_config_din_start   (mcu_config_din_start ),.mcu_config_dout_rdy (mcu_config_dout_rdy ),.mcu_mac_din   (mcu_mac_din   ),.mcu_mac_din_vld  (mcu_mac_din_vld  ),.mcu_mac_dout_rdy     (mcu_mac_dout_rdy  ),.mcu_din_rdy   (mcu_din_rdy   ),.mcu_dout       (mcu_dout    ),.mcu_dout_vld      (mcu_dout_vld   ),.mcu_dout_sig_flag     (mcu_dout_sig_flag  ),.mcu_dout_rate_con     (mcu_dout_rate_con  ),.mcu_dout_scram_seed   (mcu_dout_scram_seed   ),.mcu_dout_scram_load   (mcu_dout_scram_load   ),.phy_rst_n       (phy_rst_n    ),.tx_end                 (tx_end              ),.mcu_dout_train_rdy  (mcu_dout_train_rdy  ),.TxPWR        (TxPWR     )
);

仿真截图

仿真截图

6.ModelSim仿真结构与Matlab自动化对比

%% MCU
FPGA_mcu_dout = load([PATH,'mcu_data_out.txt'])';
disp(FPGA_mcu_dout);
check_signal_preamble = signal_preamble == FPGA_mcu_dout(1:24);
disp(check_signal_preamble);

  对比结果如下:

check_signal_preamble =1×24 logical 数组1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

 完整工程链接(含verilog和Matlab代码)

https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirecticon-default.png?t=N7T8https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirect

 

这篇关于OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997359

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc