OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码)

2024-05-24 04:20

本文主要是介绍OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.前言

2.主控逻辑

3.Matlab

4.verilog

5.ModelSim

6.ModelSim仿真结构与Matlab自动化对比


完整工程链接(含verilog和Matlab代码)

https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirecticon-default.png?t=N7T8https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirect 

1.前言

  对于发射部分的OFDM 802.11a的FPGA实现,已经接近闻声了,现在是万事俱备只欠东风,所有功能模块已经设计完成,目前还需要一个主控模块,其作用是:
(1)与MAC通信进行数据交互;
(2)控制一包发射数据按照PPDU帧结构的顺序进行发送。

  下面这两张图一直放出来,不觉得厌烦,这是协议的核心。

PPDU帧结构

PPDU帧结构

PPDU帧结构

PPDU帧结构

2.主控逻辑

  由于最终生成的OFDM符号有着严格的格式与时序要求,并且各个功能模块的处理延迟也能保持稳定,因此主控单元MCU需要对数据流向实现控制功能。另外,每次发射处理都是由MAC层,收到物理层传输完成信号,所发起的,且需要传输大量数据,以及配置信息,所以MCU与MAC层之间的通信也采用AXI Stream协议。

  当MCU收到MAC层发来的start信号后,对发射各模块硬件进行复位,并且接收参数配置信息。MAC层发来参数配置是21位信号,其中包含的是待发射PSDU帧长(LENGTH,12bits)、发射速率(RATE,6bits)和发射功率等级(TXPWR,3bits)三个发射参数。

  接收到参数配置信息,送往tx_gen_pkt_sig模块,生成signal域数据帧,并以字节形式输出。不清楚的,回顾之前的文章:OFDM 802.11a的FPGA实现(十九)signal域帧生成(含代码)

  复位之后,通过AXI Stream协议,向MAC层接收要发送的字节数据,并且控制训练序列开始输出。不清楚的,回顾之前的文章:OFDM 802.11a的FPGA实现(十七)PLCP的前导部分:长短训练序列组合加窗(含代码)

  复位之后,加载扰码器的初始状态。不清楚的,回顾之前的文章:OFDM802.11a的FPGA实现(四)扰码

  无论是signal域数据帧,还是MAC传来的待发送字节,都要送往并串转换模块,最终以bit的形式输出。MCU模块控制signal域数据帧,最先送往并串转换模块,接着MAC传来的待发送字节再送。

  TxPWR为发射功率等级,输出给后面的DAC使用。

  当一包数据发送完成,MCU模块接收到指令后,给MAC送去准备好信号,mcu_config_dout_rdy。

  tx_mcu模块输出依次连接扰码、卷积编码、删余、一级交织、二级交织、调制映射、插入导频、ifft、DAC模块(此模块后面一章节进行设计)。如下图所示:

连接方式

连接方式

  DAC模块,主要是将时域的输出按照前导码、signal帧、data域的顺序进行排列,将数据速率从125M的突发形式,转换为20M的连续形式,然后送往硬件DAC输出模拟信号。这个模块后面一个章节再来讲解设计。

3.Matlab

  matlab生成signal帧数据代码如下:

%% signal帧数据生成 
%RATE = [R1 R2 R3 R4] 字段
tx_rate = 48 * M * code_rate / 12 /4;
switch(tx_rate)case 6RATE = [1 1 0 1];case 9RATE = [1 1 1 1];case 12RATE = [0 1 0 1];case 18RATE = [0 1 1 1];case 24RATE = [1 0 0 1];case 36RATE = [1 0 1 1];case 48RATE = [0 0 0 1];case 54RATE = [0 0 1 1];otherwisedisp('tx_rate_error');
end
%保留位
R = 0;
%LENGTH字段:LSB-MSB(bit5-16)
byte_len = dec2bin(leng_num_in/8,12);
for m = 1:12LENGTH(12-m+1) = str2num(byte_len(m)); 
end
%偶校验位
EVEN_PARITY = mod(sum([RATE,R,LENGTH]),2);
%尾bit
TAIL = [0 0 0 0 0 0];
%组帧
signal_preamble = [RATE,R,LENGTH,EVEN_PARITY,TAIL];

4.verilog

发射主控模块

发射主控模块

`timescale 1ns / 1ps
module tx_mcu(input       clk     ,input      rst_n    ,//MAC层发来参数配置,21位信号,其中包含的是待发射PSDU帧长(LENGTH,12bits)、//发射速率(RATE,6bits)和发射功率等级(TXPWR,3bits)三个发射参数。input       [20:0]        mcu_config_din  ,input                 mcu_config_din_vld ,input                 mcu_config_din_start,output reg     mcu_config_dout_rdy ,//MAC层发来的信息byteinput  [7:0]   mcu_mac_din   ,input      mcu_mac_din_vld  ,output      mcu_mac_dout_rdy ,//输出信息串行bit流input      mcu_din_rdy   ,output      mcu_dout   ,output      mcu_dout_vld  ,output      mcu_dout_sig_flag ,output  [3:0]   mcu_dout_rate_con ,//扰码器初始值配置output  reg [6:0]     mcu_dout_scram_seed , //扰码器初始状态output  reg              mcu_dout_scram_load ,//物理层硬件软复位output reg     phy_rst_n   ,//输入一包数据发送完成信号input      tx_end    ,      //输出发射功率等级output  [2:0]   TxPWR    
);parameter  SEED = 7'b1011101;
//signal
wire [ 5:0] sig_din_tx_rate  ;
wire [11:0] sig_din_tx_length;
wire   sig_din_vld   ;
wire   sig_din_rdy   ;
wire [7:0] sig_dout   ;
wire   sig_dout_vld  ;
wire   sig_dout_rdy  ;
wire [3:0] sig_dout_rate_con;
wire   sig_dout_last  ;
wire   sig_dout_sig_flag;
//连接并-串
wire [7:0] P2S_din    ;
wire   P2S_din_vld   ;
wire   P2S_din_rdy   ;
wire   P2S_dout   ;
wire   P2S_dout_vld  ;
wire   P2S_dout_rdy  ;
//MAC层发来传输信号mcu_config_din_start后,对硬件复位
always@(posedge clk or negedge rst_n)beginif(!rst_n)phy_rst_n <= 1'b1;else if(mcu_config_din_start)phy_rst_n <= 1'b0;elsephy_rst_n <= 1'b1;
end
//发完一包数据后,准备好再次向MAC层接收数据
always@(posedge clk or negedge rst_n)beginif(!rst_n)mcu_config_dout_rdy <= 1'b1;else if(tx_end)mcu_config_dout_rdy <= 1'b1;elsemcu_config_dout_rdy <= 1'b0;
end
//生成signal数据帧结构
assign sig_din_tx_rate = mcu_config_din[8:3]; 
assign  sig_din_tx_length = mcu_config_din[20:9];
assign  TxPWR = mcu_config_din[2:0];
assign  sig_din_vld = mcu_config_din_vld;
//assign sig_dout_rdy = mcu_config_dout_rdy;
assign sig_din_rdy = sig_dout_sig_flag ? P2S_dout_rdy : 1'b0;tx_gen_pkt_sig u_tx_gen_pkt_sig(.clk    (clk    ),.rst_n    (rst_n    ),.sig_din_tx_rate (sig_din_tx_rate ),.sig_din_tx_length (sig_din_tx_length ),.sig_din_vld  (sig_din_vld  ),.sig_din_rdy  (sig_din_rdy  ),.sig_dout   (sig_dout   ),.sig_dout_vld  (sig_dout_vld  ),.sig_dout_rdy  (sig_dout_rdy  ),.sig_dout_rate_con (sig_dout_rate_con ),.sig_dout_last  (sig_dout_last  ),.sig_dout_sig_flag (sig_dout_sig_flag )
);assign mcu_dout_rate_con = sig_dout_rate_con; 
assign mcu_dout_sig_flag = sig_dout_sig_flag;assign P2S_din = sig_dout_sig_flag ? {sig_dout[0],sig_dout[1],sig_dout[2],sig_dout[3],sig_dout[4],sig_dout[5],sig_dout[6],sig_dout[7]} : mcu_mac_din;
assign P2S_din_vld = sig_dout_sig_flag ? sig_dout_vld : mcu_mac_din_vld;
assign P2S_din_rdy = mcu_din_rdy;Par2Ser #( .WIDTH  (4'd8),.LSB_FIRST (1'b1))
Par2Ser_u2(.clk  (clk   ),.rst_n  (rst_n   ),.din  (P2S_din  ),.din_vld (P2S_din_vld ),.din_rdy (P2S_din_rdy ),.dout  (P2S_dout  ),.dout_vld (P2S_dout_vld ),.dout_rdy   (P2S_dout_rdy   )
);assign mcu_dout = P2S_dout;
assign mcu_dout_vld = P2S_dout_vld;
assign mcu_mac_dout_rdy = P2S_dout_rdy;
//扰码器初始值配置
always@(posedge clk or negedge rst_n)beginif(!rst_n)beginmcu_dout_scram_load <= 1'b0;mcu_dout_scram_seed <= 'd0;endelse beginmcu_dout_scram_load <= ~phy_rst_n;mcu_dout_scram_seed <= SEED;end
endendmodule

5.ModelSim

  等最后一个DAC模块设计完成再一起进行整个发射部分联调,现在先对MUC模块进行简单测试,粗略查看下控制时序是否正确,以及输出signal的数据是否能对应上matlab生成的。testbench测试逻辑部分如下:

always@(posedge clk or negedge rst_n)if(!rst_n)mcu_config_din_start <= 1'b0;else if(mcu_config_dout_rdy)mcu_config_din_start <= 1'b1;elsemcu_config_din_start <= 1'b0;always@(posedge clk or negedge rst_n)if(!rst_n)beginmcu_config_din <= 'd0;mcu_config_din_vld <= 1'b0;endelse if(mcu_config_din_start)beginmcu_config_din <= {LEGENTH,6'd36,3'd0};mcu_config_din_vld <= 1'b1;endelsemcu_config_din_vld <= 1'b0;assign mcu_mac_din = P2S_din;
assign mcu_mac_din_vld = P2S_din_vld;
assign mcu_din_rdy = P2S_din_rdy;
assign tx_end = cnt_last; tx_mcu u_tx_mcu(.clk     (clk     ),.rst_n     (rst_n     ),.mcu_config_din      (mcu_config_din   ),.mcu_config_din_vld     (mcu_config_din_vld  ),.mcu_config_din_start   (mcu_config_din_start ),.mcu_config_dout_rdy (mcu_config_dout_rdy ),.mcu_mac_din   (mcu_mac_din   ),.mcu_mac_din_vld  (mcu_mac_din_vld  ),.mcu_mac_dout_rdy     (mcu_mac_dout_rdy  ),.mcu_din_rdy   (mcu_din_rdy   ),.mcu_dout       (mcu_dout    ),.mcu_dout_vld      (mcu_dout_vld   ),.mcu_dout_sig_flag     (mcu_dout_sig_flag  ),.mcu_dout_rate_con     (mcu_dout_rate_con  ),.mcu_dout_scram_seed   (mcu_dout_scram_seed   ),.mcu_dout_scram_load   (mcu_dout_scram_load   ),.phy_rst_n       (phy_rst_n    ),.tx_end                 (tx_end              ),.mcu_dout_train_rdy  (mcu_dout_train_rdy  ),.TxPWR        (TxPWR     )
);

仿真截图

仿真截图

6.ModelSim仿真结构与Matlab自动化对比

%% MCU
FPGA_mcu_dout = load([PATH,'mcu_data_out.txt'])';
disp(FPGA_mcu_dout);
check_signal_preamble = signal_preamble == FPGA_mcu_dout(1:24);
disp(check_signal_preamble);

  对比结果如下:

check_signal_preamble =1×24 logical 数组1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

 完整工程链接(含verilog和Matlab代码)

https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirecticon-default.png?t=N7T8https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkxNjM0NDk2Nw==&action=getalbum&album_id=3409621333838200834#wechat_redirect

 

这篇关于OFDM 802.11a的FPGA实现(二十一)发射主控模块MCU(含代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997359

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一