机器学习过度拟合问题一些原因

2024-05-24 01:48

本文主要是介绍机器学习过度拟合问题一些原因,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这几天在训练一个文本处理的机器学习算法,使用支持向量机和决策树算法在训练集上的数据的准确度特别高,但是在测试集上的数据的准确度确很低,于是陷入过度拟合的烦恼中,查找资料发现一些多度拟合的看法。仔细想想确实在训练时存在一些问题,第一:输入变量多,由于缺乏对问题的根本认识,使用了很多无关变量,这个问题打算从其它途径先认识变量和问题的关系;第二:数据的噪声可能是比较大,没有考虑到关键的特征和信息。下面的几段文字是一些关于多度拟合的认识:
过度拟合(overfitting)是指数据模型在训练集里表现非常满意,但是一旦应用到真实业务实践时,效果大打折扣;换成学术化语言描述,就是模型对样本数据拟合非常好,但是对于样本数据外的应用数据,拟合效果非常差。在我们数据分析挖掘业务实践中,就是“模型搭建时表现看上去非常好,但是应用到具体业务实践时,模型效果显著下降,包括准确率、精度、效果等等显著下降”。
我自己见识有限,目光短浅,无法穷举主要的原因和避免的方法,只能班门弄斧,抛砖引玉,说说我自己的一孔之见了,期待各位的指正和增补,我给各位献丑了。
过拟合的第一个原因,就是建模样本抽取错误,包括(但不限于)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景;
过拟合的第二个原因,就是样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系;
过拟合的第三个原因,就是在决策树模型搭建中,如果我们对于决策树的生长没有合理的限制和修剪的话,决策树的自由生长有可能每片叶子里只包含单纯的事件数据(event)或非事件数据(no event),可以想象,这种决策树当然可以完美匹配(拟合)训练数据,但是一旦应用到新的业务真实数据时,效果是一塌糊涂。
过拟合的第四个原因,就是建模时的“逻辑假设”到了模型应用时已经不能成立了。任何预测模型都是在假设的基础上才可以搭建和应用的,常用的假设包括:假设历史数据可以推测未来,假设业务环节没有发生显著变化,假设建模数据与后来的应用数据是相似的,等等。如果上述假设违反了业务场景的话,根据这些假设搭建的模型当然是无法有效应用的。
过拟合的第五个原因,就是建模时使用了太多的输入变量,这跟上面第二点(噪音数据)有些类似,数据挖掘新人常常犯这个错误,自己不做分析判断,把所有的变量交给软件或者机器去“撞大运”。须知,一个稳定优良的模型一定要遵循建模输入变量“少而精”的原则的。
上面的原因都是现象,但是其本质只有一个,那就是“业务理解错误造成的”,无论是抽样,还是噪音,还是决策树,神经网络等等,如果我们对于业务背景和业务知识非常了解,非常透彻的话,一定是可以避免绝大多数过拟合现象产生的。因为在模型从确定需求,到思路讨论,到搭建,到业务应用验证,各个环节都是可以用业务敏感来防止过拟合于未然的。
入世,出世,都是一样的“道”,所谓“道”从来不离开我们半步,只是看我们自身是否足够清净,足够醒悟,足够真实而已。佛法有八万四千法门,但是这些林林总总的都是不同的方便路径,归根结底,佛法的根本只是“认识我们与生俱来的本来面目,真如自性”而已。
过拟合的产生,原因种种,不一而足,但是这种分类和剖析只是人为的方便而已,防止过拟合的终极思路就是真正透彻理解业务背景和业务逻辑,有了这个根本,我们一定可以正确抽样,一定可以发现排除噪声数据,一定可以在决策树、神经网络等算法中有效防止过拟合产生的。
当然,除了上面“业务透彻了解”这个根本外,也有一些技术层面的方法来防止过拟合的产生,虽然是“术”的层面,但是很多人热衷于这些技巧,所以,在这里也顺便列举如下:
最基本的技术手段,就是合理、有效抽样;包括分层抽样,过抽样,等等,用不同的样本去检验模型;
另外,事前准备几个不同时间窗口,不同范围的测试数据集、验证数据集,把模型在不同的数据集里分别“交叉检验”,是目前业界防止过拟合的最常用的手段了;
第三,建模时目标观测值的数量太少,如何分割训练集和验证集的比例,需要建模人员灵活掌握;
第四,如果数据太少的话,谨慎使用神经网络模型,只有足够多的数据的情况下,神经网络模型才可以有效防止过拟合的产生。并且,使用神经网络时,一定要事先有效筛选输入变量,千万不能一股脑把所有变量放进去。
说一千,道一万,上面的文字都只是文字而已,如何防止过拟合,这个最终只能靠你在实践中自己去体会,去摸索,去感觉。这个世界上,把佛法,佛学挂在嘴边的人比比皆是,少有人能真正“信、解、行、证”,所以成佛作祖在我们这个时代实在是太稀有太罕见了。我自己也惭愧至极,罗里啰嗦,胡说八道总结了这些过拟合的原因和防止对策,但是我自己又对数据挖掘实践应用了解多少呢?我又有什么资格在这里夸夸其谈呢?我这几天一直在思考“互联网行业数据化运营的桎梏”,在总结种种数据化运营效果不好的原因时,也忘记了“过拟合”这个技术层面,可见我也只会嘴上夸夸其谈,行动上没有半点功夫,我对自己充满了鄙视。

这篇关于机器学习过度拟合问题一些原因的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997030

相关文章

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动