H800基础能力测试

2024-05-23 22:44
文章标签 基础 测试 能力 h800

本文主要是介绍H800基础能力测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

H800基础能力测试

  • 参考链接
  • A100、A800、H100、H800差异
  • H100详细规格
  • H100 TensorCore FP16 理论算力计算公式
  • 锁频
  • 安装依赖
  • pytorch FP16算力测试
  • cublas FP16算力测试
  • 运行cuda-samples

本文记录了H800基础测试步骤及测试结果

参考链接

  • NVIDIA H100 Tensor Core GPU Architecture
  • How to calculate the Tensor Core FP16 performance of H100?
  • NVIDIA H100 PCIe 80 GB
  • NVIDIA H800 Tensor Core GPU

A100、A800、H100、H800差异

在这里插入图片描述

H100详细规格

在这里插入图片描述

H100 TensorCore FP16 理论算力计算公式

  • 4096 FLOP/clk per SM.
  • The H100 PCIE has 114 SMs
  • 114 x 4096 = 466944 FLOP/clk
  • BoostClock:1620MHz
  • 114 x 4096 x1620M/1000/1000=756 TFLOPS
  • 当前的卡最大频率为1980–> 114 x 4096 x1980M/1000/1000=924 TFLOPS

锁频

nvidia-smi -q -d SUPPORTED_CLOCKS
nvidia-smi -lgc 1980,1980 
nvidia-smi --lock-memory-clocks-deferred=2619

安装依赖

pip3 install https://github.com/cupy/cupy/releases/download/v13.1.0/cupy_cuda12x-13.1.0-cp310-cp310-manylinux2014_x86_64.whl
pip3 install pycuda

pytorch FP16算力测试

tee torch_flops.py <<-'EOF'
import pycuda.autoinit
import pycuda.driver as cuda
import torch
import timedef benchmark_pytorch_fp16(M,N,K, num_runs):# 确保使用 GPU 并设置数据类型为半精度浮点数 (float16)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')dtype = torch.float16# 生成随机矩阵A = torch.randn((M, K), device=device, dtype=dtype)B = torch.randn((K, N), device=device, dtype=dtype)    # 预热 GPU,进行一次矩阵乘法C = torch.matmul(A, B)    # 记录开始时间start_time = time.time()    # 多次进行矩阵乘法,计算 FLOPSstart = cuda.Event()end = cuda.Event()start.record()    for _ in range(num_runs):C = torch.mm(A, B)    end.record()torch.cuda.synchronize()    elapsed_time = start.time_till(end) / num_runs    # 计算 GFLOPSnum_operations = 2 * M*N*Kgflops = num_operations / (elapsed_time * 1e-3) / 1e12    return elapsed_time, gflops# 记录结束时间end_time = time.time()    # 计算平均运行时间elapsed_time = (end_time - start_time) / num_runs    # 计算总的 FLOPstotal_flops = 2 * M*K*N    # 计算 GFLOPSgflops = total_flops / elapsed_time / 1e12    return elapsed_time, gflops
# 设置矩阵大小和运行次数
num_runs = 32
M=2048
N=2048
K=40960
for i in range(5):# 运行基准测试elapsed_time, gflops = benchmark_pytorch_fp16(M,N,K, num_runs)# 输出结果print(f"Num:{i} 矩阵乘法大小: {M}x{K}X{N} 平均运行时间: {elapsed_time:.6f} 秒 TFLOPS: {gflops:.2f}")time.sleep(0.1)
EOF
python3 torch_flops.py

输出(790/924=85%)

Num:0 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.441580 秒 TFLOPS: 778.11
Num:1 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430380 秒 TFLOPS: 798.36
Num:2 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430523 秒 TFLOPS: 798.09
Num:3 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430742 秒 TFLOPS: 797.69
Num:4 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430283 秒 TFLOPS: 798.54

cublas FP16算力测试

tee cublas_flops.py <<-'EOF'
import cupy as cp
import numpy as np
from cupy._core import _dtype
from cupy.cuda import cublas
from time import time
from ctypes import c_void_p, c_float, cast, pointer, byref
import pycuda.autoinit
import pycuda.driver as cudadef cublas_fp16_strided_batched_gemm(M,N,K, batch_size, num_runs):# 创建随机半精度矩阵并转换为 CuPy 数组cp.cuda.Device(0).use()A = cp.random.randn(batch_size, M, K).astype(cp.float16)B = cp.random.randn(batch_size, K, N).astype(cp.float16)C = cp.empty((batch_size, M, N), dtype=cp.float16)# 创建 cuBLAS 句柄handle = cublas.create()    # 标量 alpha 和 betaalpha = np.array(1, dtype=np.float16)beta = np.array(0, dtype=np.float16)    cublas.setMathMode(handle, cublas.CUBLAS_TENSOR_OP_MATH)algo = cublas.CUBLAS_GEMM_DEFAULT_TENSOR_OP    try:# Warm-up (预热)for j in range(1):cublas.gemmStridedBatchedEx(handle,cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N,M, N, K,alpha.ctypes.data, A.data.ptr,_dtype.to_cuda_dtype(A.dtype,True), M, M * K,B.data.ptr, _dtype.to_cuda_dtype(B.dtype,True), K, K * N,beta.ctypes.data, C.data.ptr, _dtype.to_cuda_dtype(C.dtype,True), M, M * N,batch_size,_dtype.to_cuda_dtype(C.dtype,True), algo)cp.cuda.Device(0).synchronize()    # 实际基准测试start = cuda.Event()end = cuda.Event()start.record()start_time = time()for _ in range(num_runs):cublas.gemmStridedBatchedEx(handle,cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N,M, N, K,alpha.ctypes.data, A.data.ptr,_dtype.to_cuda_dtype(A.dtype,True), M, M * K,B.data.ptr, _dtype.to_cuda_dtype(B.dtype,True), K, K * N,beta.ctypes.data, C.data.ptr, _dtype.to_cuda_dtype(C.dtype,True), M, M * N,batch_size,_dtype.to_cuda_dtype(C.dtype,True), algo)end.record()cp.cuda.Device(0).synchronize()end_time = time()    except cp.cuda.runtime.CUDARuntimeError as e:print(f"CUDA 运行时错误: {e}")cublas.destroy(handle)return None, None    elapsed_time = start.time_till(end) / num_runs    # 计算 GFLOPSnum_operations = 2 * M*N*K*batch_sizegflops = num_operations / (elapsed_time * 1e-3) / 1e12    return elapsed_time, gflops    elapsed_time = (end_time - start_time) / num_runsnum_ops = 2*M*K*N*batch_sizegflops = num_ops / elapsed_time / 1e12    cublas.destroy(handle)    return elapsed_time, gflops
num_runs = 32
M=2048
N=2048
K=40960
matrix_size = 1
for i in range(5):elapsed_time, gflops = cublas_fp16_strided_batched_gemm(M,N,K,matrix_size,num_runs)print(f"Num:{i} 矩阵乘法大小: {M}x{K}X{N} 平均运行时间: {elapsed_time:.6f} 秒 TFLOPS: {gflops:.2f}")
EOF
python3 cublas_flops.py

输出(817/924=88%)

Num:0 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.421070 秒 TFLOPS: 816.01
Num:1 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420407 秒 TFLOPS: 817.30
Num:2 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420305 秒 TFLOPS: 817.50
Num:3 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420304 秒 TFLOPS: 817.50
Num:4 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420554 秒 TFLOPS: 817.01

运行cuda-samples

git clone https://www.github.com/nvidia/cuda-samples
cd cuda-samples/Samples/1_Utilities/deviceQuery
make clean && make
./deviceQuery
cd ../bandwidthTest/
make clean && make
./bandwidthTest
cd ../../4_CUDA_Libraries/batchCUBLAS/
make clean && make
./batchCUBLAS -m8192 -n8192 -k8192 --device=0

输出

Device 0: "NVIDIA H800"CUDA Driver Version / Runtime Version          12.2 / 12.2CUDA Capability Major/Minor version number:    9.0Total amount of global memory:                 81008 MBytes (84942979072 bytes)(132) Multiprocessors, (128) CUDA Cores/MP:    16896 CUDA CoresGPU Max Clock rate:                            1980 MHz (1.98 GHz)Memory Clock rate:                             2619 MhzMemory Bus Width:                              5120-bitL2 Cache Size:                                 52428800 bytesMaximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layersMaximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layersTotal amount of constant memory:               65536 bytesTotal amount of shared memory per block:       49152 bytesTotal shared memory per multiprocessor:        233472 bytesTotal number of registers available per block: 65536Warp size:                                     32Maximum number of threads per multiprocessor:  2048Maximum number of threads per block:           1024Max dimension size of a thread block (x,y,z): (1024, 1024, 64)Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)Maximum memory pitch:                          2147483647 bytesTexture alignment:                             512 bytesConcurrent copy and kernel execution:          Yes with 3 copy engine(s)Run time limit on kernels:                     NoIntegrated GPU sharing Host Memory:            NoSupport host page-locked memory mapping:       YesAlignment requirement for Surfaces:            YesDevice has ECC support:                        EnabledDevice supports Unified Addressing (UVA):      YesDevice supports Managed Memory:                YesDevice supports Compute Preemption:            YesSupports Cooperative Kernel Launch:            YesSupports MultiDevice Co-op Kernel Launch:      YesDevice PCI Domain ID / Bus ID / location ID:   0 / 215 / 0Compute Mode:< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
-----------------------------------------------------------------------------------------------------[CUDA Bandwidth Test] - Starting...
Running on...Device 0: NVIDIA H800Quick ModeHost to Device Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     55.2Device to Host Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     55.3Device to Device Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     2085.3Result = PASS-----------------------------------------------------------------------------------------------------==== Running single kernels ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbf800000, -1) beta= (0x40000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.04317784 sec  GFLOPS=25464.7
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.00023699 sec  GFLOPS=4.63952e+06
@@@@ dgemm test OK==== Running N=10 without streams ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbf800000, -1) beta= (0x00000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.22819090 sec  GFLOPS=48183.9
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.56301594 sec  GFLOPS=950.887
@@@@ dgemm test OK==== Running N=10 with streams ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x40000000, 2) beta= (0x40000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.23047590 sec  GFLOPS=47706.1
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.38687706 sec  GFLOPS=965.595
@@@@ dgemm test OK==== Running N=10 batched ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x3f800000, 1) beta= (0xbf800000, -1)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.21581888 sec  GFLOPS=50946
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.38980007 sec  GFLOPS=965.348
@@@@ dgemm test OKTest Summary
0 error(s)

这篇关于H800基础能力测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/996623

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb