YOLOv3配置文件源码详解

2024-05-20 19:32

本文主要是介绍YOLOv3配置文件源码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv3的配置文件,其中需要注意的是数据增强的方式,有两个,一个是
角度旋转+饱和度+曝光量+色调,外加jitter,随即调整宽高比的范围。之后需要注意的就是
3个尺度的box的mask。后续要知道他们是怎么整合起来的


[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64 #训练样本样本数
subdivisions=16  #net->batch /= subdivisions
width=416
height=416
channels=3
momentum=0.9 #动量
decay=0.0005    #权重衰减正则化
angle=0    #旋转角度数据增强
saturation = 1.5 #饱和度数据增强
exposure = 1.5    #调整曝光量数据增强
hue=.1    #调整色调数据增强learning_rate=0.001 #学习率决定权值更新的速度
#在迭代次数小于burn_in时,其学习率更新方式有一种,大于burn_in,采用policyburn_in=1000    
max_batches = 50200 #迭代停止次数
policy=steps    #学习率更新策略
steps=40000,45000    #steps更新策略
scales=.1,.1[convolutional]
batch_normalize=1 #是否进行BN处理
filters=32    #卷积核个数,输出个数
size=3    #卷积核尺寸
stride=1
pad=1
activation=leaky
#卷积核3*3配合padding步长为1,不改变feature map大小,padding为2,改变原来一半大小# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky #网络层激活函数[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3
activation=linear# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3   #表示前面3层,就是Resnet
activation=linear #激活函数[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3
activation=linear# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky。。。中间重复的conv。。。[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
#filters = num*(classed+5),5的意义就是4个坐标+置信度,num表示yolo中每个cell预测的框的个数,为3,voc数据集是20类,coco数据集是80类
activation=linear[yolo]
mask = 6,7,8 #不同尺度的大小对应的anchor的索引。
# anchor的大小anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9  #每个grid cell总共预测几个box,和anchors的数量一致。
jitter=.3 #数据增强手段:jitter为随机调整宽高比的范围。
ignore_thresh = .5 #参与计算的IOU阈值大小,当预测的检测框与ground truth的IOU大于ignore_thre的时候,参与loss的计算,否则检测框不参与损失计算。
truth_thresh = 1
random=1#路由层可以包含一个或者两个值的属性,当属性只有一个值时,它输出由该索引的图层的特征图,,示例中为-4,因此路由层将从route层输出倒数的第4层的特征图。
[route] 
layers = -4[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2#当属性有两个值时,它会返回由其值所索引的层的拼接特征图,-1和61,并且路由层将输出前一层(-1)和第61层的特征图,沿深度维度拼接。
[route]
layers = -1, 61[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1[route]
layers = -4[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2[route]
layers = -1, 36[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear#anchors有9个,但是只有带mask标签的用上了,这里的mask=0,1,2意味着,第一,第二,第三个anchors被使用了,每个cell预测3个boxes,总共我们的检测网络有3个尺度,总共9个anchors。
[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1

这篇关于YOLOv3配置文件源码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995910

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected