Pytorch_torchvision

2024-05-16 16:32
文章标签 pytorch torchvision

本文主要是介绍Pytorch_torchvision,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchvision.datasets

这其中所有的数据集都是torch.utils.data.Dataset的子类,它们都具有__getitem____len__实现的方法。因此,它们都可以传递给torch.utils.data.DataLoader,它使用torch.multiprocessing并行加载多个样本。

torchvision.transforms

其中都是常见的图像转换,可以通过Compose将他们链接在一起

此外还有torchvision.transforms.functional模块,可对转换进行细粒度控制,这对于要构建一个更复杂的 transformation pipeline(例如在segmentation tasks分段任务中)很有帮助

torchvision.transforms.Normalize(mean, std, inplace=False)

用均值和标准差对张量图像进行归一化。

给定n个通道的均值: (M1,...,Mn) 和标准差:(S1,..,Sn), 这个转换将归一化输入torch.*Tensor的每个通道。例如: input[channel] = (input[channel] - mean[channel]) / std[channel]

Note: 这种变换的作用不适当,即它不会改变输入张量

torchvision.utils

torchvision.utils.make_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0)

创建图像网格,即将若干幅图像拼成一幅图像

  • tensor (Tensor or list) – 四维 mini-batch Tensor 尺寸为 (B x C x H x W) 或一个所有图像大小相同的list

  • nrow (python:int, optional) – 网格中每行展示图像的数量。最后一行size为 (B / nrow, nrow)

  • padding (python:int, optional) – 填充量(多幅图像间距)

  • normalize (bool, optional) – 若为True, 根据由range范围指定的最大最小值,将图像归一化到(0, 1)

  • range (tuple, optional) – tuple (min, max) 用于归一化图像. min和max默认通过tensor计算

  • scale_each (bool, optional) – 若为True, 分别缩放该批图像中的每个图像,而不是缩放所有图像的(min, max)

  • pad_value (python:float, optional) – 填充值

这篇关于Pytorch_torchvision的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995394

相关文章

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确