CogVLM 本地部署体验(问题解决)docker容器版

2024-05-16 12:44

本文主要是介绍CogVLM 本地部署体验(问题解决)docker容器版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

硬件要求(模型推理):
INT4 : RTX30901,显存24GB,内存32GB,系统盘200GB
INT4 : RTX4090
1或RTX3090*2,显存24GB,内存32GB,系统盘200GB
模型微调硬件要求更高。一般不建议个人用户环境使用
如果要运行官方web界面streamlit run composite_demo/main.py 显存需要40G以上,至少需两张RTX3090显卡。否则基本无法体验

环境准备

模型准备

手动下载以下几个模型(体验时几个模型不一定需全下载)
下载地址:https://hf-mirror.com/THUDM
lmsys/vicuna-7b-v1.5
THUDM/cogagent-chat-hf
THUDM/cogvlm-chat-hf
THUDM/cogvlm-grounding-generalist-hf

下载模型源码
git clone https://github.com/THUDM/CogVLM.git; 
cd CogVLM
创建conda环境
conda create -n cogvlm python=3.11 -y 
source activate cogvlm
修改本国内源
pip config set global.index-url http://mirrors.aliyun.com/pypi/simple
pip config set install.trusted-host mirrors.aliyun.com

安装依赖库

安装torch torchvision torchaudio
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

image.png

安装 cuda-runtime
(cogvlm) develop@itserver03:/u01/workspace/cogvlm/CogVLM$: conda install -y -c "nvidia/label/cuda-12.1.0" cuda-runtimeThe following NEW packages will be INSTALLED:cuda-cudart        nvidia/label/cuda-12.1.0/linux-64::cuda-cudart-12.1.55-0 cuda-libraries     nvidia/label/cuda-12.1.0/linux-64::cuda-libraries-12.1.0-0 cuda-nvrtc         nvidia/label/cuda-12.1.0/linux-64::cuda-nvrtc-12.1.55-0 cuda-opencl        nvidia/label/cuda-12.1.0/linux-64::cuda-opencl-12.1.56-0 cuda-runtime       nvidia/label/cuda-12.1.0/linux-64::cuda-runtime-12.1.0-0 libcublas          nvidia/label/cuda-12.1.0/linux-64::libcublas-12.1.0.26-0 libcufft           nvidia/label/cuda-12.1.0/linux-64::libcufft-11.0.2.4-0 libcufile          nvidia/label/cuda-12.1.0/linux-64::libcufile-1.6.0.25-0 libcurand          nvidia/label/cuda-12.1.0/linux-64::libcurand-10.3.2.56-0 libcusolver        nvidia/label/cuda-12.1.0/linux-64::libcusolver-11.4.4.55-0 libcusparse        nvidia/label/cuda-12.1.0/linux-64::libcusparse-12.0.2.55-0 libnpp             nvidia/label/cuda-12.1.0/linux-64::libnpp-12.0.2.50-0 libnvjitlink       nvidia/label/cuda-12.1.0/linux-64::libnvjitlink-12.1.55-0 libnvjpeg          nvidia/label/cuda-12.1.0/linux-64::libnvjpeg-12.1.0.39-0 
Downloading and Extracting Packages:
libcublas-12.1.0.26  | 329.0 MB  |                                                                                                                                                                   |   0% 
libcusparse-12.0.2.5 | 163.0 MB  |                                                                                                                                                                   |   0% 
libnpp-12.0.2.50     | 139.8 MB  |                                                                                                                                                                   |   0% 
libcufft-11.0.2.4    | 102.9 MB  |                                                                                                                                                                   |   0% 
libcusolver-11.4.4.5 | 98.3 MB   |                                                                                                                                                                   |   0% 
libcurand-10.3.2.56  | 51.7 MB   |                                                                                                                                                                   |   0% 
cuda-nvrtc-12.1.55   | 19.7 MB   |                                                                                                                                                                   |   0% 
libnvjitlink-12.1.55 | 16.9 MB   |                                                                                                                                                                   |   0% 
libnvjpeg-12.1.0.39  | 2.5 MB    |                                                                                                                                                                   |   0% 
libcufile-1.6.0.25   | 763 KB    |                                                                                                                                                                   |   0% 
cuda-cudart-12.1.55  | 189 KB    |                                                                                                                                                                   |   0% 
cuda-opencl-12.1.56  | 11 KB     |                                                                                                                                                                   |   0% 
cuda-libraries-12.1. | 2 KB      |                                                                                                                                                                   |   0% 
cuda-runtime-12.1.0  | 1 KB      |                                                                                                                                                                   |   0%                                                                                                                                                                                                        
Preparing transaction: done                                                                                                                                                                                 
Verifying transaction: done                                                                                                                                                                                 
Executing transaction: done                                                                                                                                                                                 
(cogvlm) develop@itserver03:/u01/workspace/cogvlm/CogVLM$   
安装CogVLM依赖库
pip install -r requirements.txt

image.png

在安装后,启动web界面时,会出现报错,可能碰到如下安装包依赖库问题。huggingface_hub版本不要用最新版。这里制定版本huggingface_hub==0.21.4。bitsandbytes,chardet 这两库可能会需要单独在安装以便,这里至少我是碰到了错误。

pip install bitsandbytes
pip install chardet
pip install huggingface_hub==0.21.4
安装语言模型(非必须)
python -m spacy download en_core_web_sm

运行

运行web界面

运行前请先修改模型地址,编辑composite_demo/client.py 文件中默认的模型地址

models_info = {'tokenizer': {#'path': os.environ.get('TOKENIZER_PATH', 'lmsys/vicuna-7b-v1.5'),'path': os.environ.get('TOKENIZER_PATH', '/u01/workspace/cogvlm/models/vicuna-7b-v1.5'),},'agent_chat': {#'path': os.environ.get('MODEL_PATH_AGENT_CHAT', 'THUDM/cogagent-chat-hf'),'path': os.environ.get('MODEL_PATH_AGENT_CHAT', '/u01/workspace/cogvlm/models/cogagent-chat-hf'),'device': ['cuda:0']},'vlm_chat': {#'path': os.environ.get('MODEL_PATH_VLM_CHAT', 'THUDM/cogvlm-chat-hf'),'path': os.environ.get('MODEL_PATH_VLM_CHAT', '/u01/workspace/cogvlm/models/cogvlm-chat-hf'),'device': ['cuda:0']},'vlm_grounding': {#'path': os.environ.get('MODEL_PATH_VLM_GROUNDING','THUDM/cogvlm-grounding-generalist-hf'),'path': os.environ.get('MODEL_PATH_VLM_GROUNDING','/u01/workspace/cogvlm/models/cogvlm-grounding-generalist-hf'),'device': ['cuda:']}
}

执行启动命令

streamlit run composite_demo/main.py

成功后可以打开界面
image.png

控制台交互式运行

在python basic_demo/cli_demo_hf.py中运行代码,注意替换模型地址

python cli_demo_hf.py --from_pretrained /u01/workspace/cogvlm/models/cogvlm-chat-hf --fp16 --quant 4

截图 2024-05-08 16-36-52.png

OpenAI 方式 Restful API 运行

运行服务端

python openai_demo/openai_api.py

image.png

客户端请求
请编辑openai_demo/openai_api_request.py中的图片地址以及你需要提的问题,例如

messages = [{"role": "user","content": [{"type": "text","text": "What’s in this image?",},{"type": "image_url","image_url": {"url": img_url},},],},{"role": "assistant","content": "The image displays a wooden boardwalk extending through a vibrant green grassy wetland. The sky is partly cloudy with soft, wispy clouds, indicating nice weather. Vegetation is seen on either side of the boardwalk, and trees are present in the background, suggesting that this area might be a natural reserve or park designed for ecological preservation and outdoor recreation. The boardwalk allows visitors to explore the area without disturbing the natural habitat.",},{"role": "user","content": "Do you think this is a spring or winter photo?"},
]
if __name__ == "__main__":simple_image_chat(use_stream=False, img_path="/u01/workspace/cogvlm/CogVLM/openai_demo/demo.jpg")

运行客户端请求命令

python openai_demo/openai_api_request.py

截图 2024-05-08 17-45-44.png

Docker 容器化部署

Dockerfile样例

注意 COPY CogVLM/ /app/CogVLM/ 这行执行需要根据世纪CogVLM源码下载存放位置。

FROM pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime
ARG DEBIAN_FRONTEND=noninteractiveWORKDIR /appRUN pip config set global.index-url http://mirrors.aliyun.com/pypi/simple
RUN pip config set install.trusted-host mirrors.aliyun.comCOPY CogVLM/ /app/CogVLM/
WORKDIR /app/CogVLMRUN pip install bitsandbytes
RUN pip install --use-pep517 -r requirements.txt
RUN pip install huggingface_hub==0.23.0EXPOSE 8000 8051CMD [ "python","openai_demo/openai_api.py" ]

本文采用基础镜像pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime 自带的 pip 相关版本与源码中的部分版本冲突(xformers,torch,torchvision),所以,下载原名后需要修改requirements.txt文件:

SwissArmyTransformer>=0.4.9
transformers==4.36.2
xformers==0.0.25
#torch>=2.1.0
#torchvision>=0.16.2
spacy>=3.6.0
pillow>=10.2.0
deepspeed>=0.13.1
seaborn>=0.13.2
loguru~=0.7.2
streamlit>=1.31.0
timm>=0.9.12
accelerate>=0.26.1
pydantic>=2.6.0# for openai demo
openai>=1.16.0
sse-starlette>=1.8.2
fastapi>=0.110.1
httpx>=0.27.0
uvicorn>=0.29.0
jsonlines>=4.0.0
构建image
docker build -t qingcloudtech/cogvlm:v1.1 .
运行docker
docker run -itd --gpus all \-p 8000:8000 \-v /u01/workspace/models:/u01/workspace/models \-v /u01/workspace/cogvlm/images:/u01/workspace/images \qingcloudtech/cogvlm:v1.1
openai api 方式运行
docker run -itd --gpus all \-p 8000:8000 \-v /u01/workspace/models:/u01/workspace/models \-v /u01/workspace/cogvlm/images:/u01/workspace/images \qingcloudtech/cogvlm:v1.1

支持的环境变量:
MODEL_PATH: Model地址,如 /u01/workspace/models/cogvlm-chat-hf
TOKENIZER_PATH: tokenizer 地址:如/u01/workspace/models/vicuna-7b-v1.5
QUANT_ENABLED: 默认值为true
注意环境变量中模型的路径地址如果挂载到主机上了,需要与挂在映射路径一致。

测试验证
693cce5688f2 替换为自己的容器ID

docker exec -it 693cce5688f2 python openai_demo/openai_api_request.py
root@itserver03:/u01/workspace/cogvlm/CogVLM/openai_demo# docker exec -it 693cce5688f2 python openai_demo/openai_api_request.py 
This image captures a serene landscape featuring a wooden boardwalk that leads through a lush green field. The field is bordered by tall grasses, and the sky overhead is vast and blue, dotted with wispy clouds. The horizon reveals distant trees and a clear view of the sky, suggesting a calm and peaceful day.
root@itserver03:/u01/workspace/cogvlm/CogVLM/openai_demo# 

其他访问方式:

Restful API地址:
127.0.0.1:8000/v1/chat/completions


【Qinghub Studio 】更适合开发人员的低代码开源开发平台
【QingHub企业级应用统一部署】
【QingHub企业级应用开发管理】
QingHub** 演示】**
https://qingplus.cn

这篇关于CogVLM 本地部署体验(问题解决)docker容器版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994940

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM