小白也会SQL:大模型改变交互方式(上)

2024-05-16 10:12

本文主要是介绍小白也会SQL:大模型改变交互方式(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在人工智能与自然语言处理交汇点,有一种技术正悄然改变与数据交互的方式——将日常语言转化为精准SQL查询。这一“text-to-sql”转换任务,使非专业人士也能轻松驾驭复杂的数据库操作,极大地拓宽了数据应用的边界。

然而,现有前沿方法往往依赖于封闭源代码的大型语言模型,它们虽然功能强大,却伴随着模型透明度缺失、数据隐私风险增大以及高昂推理成本等难题。有没有既开放、高效又安全的替代方案呢?鲁班模锤今天带来的论文《CodeS: Towards Building Open-source Language Models for Text-to-SQL》正在尝试破局。

课题背景

Text-to-sql的任务是指将用户的自然语言的提问(文本)转化成能在数据库上执行的结构化查询查询语言(SQL)。下图为对某一 “银行金融”数据库提出自然语言的问题,再转化为数据库查询语言(SQL)的过程。这个过程使得不熟悉SQL或数据库结构的用户也能够使用自然语言与数据库交互。

依赖部分现有的大模型也能实施,例如闭源的大语言模型 DIN-SQL(基于GPT-4)、SQL-PaLM(基于PaLM-2)或是C3(基于GPT-3.5)。尽管这些模型在Text-to-sql性能上表现出色,但也可能存在以下问题:

  1. 闭源模型隐藏了落地的具体架构以及训练/推理细节,阻碍了针对特定应用的持续开发。(这里突然想起来最近有位大佬说某大厂坚持闭源,回头另文点评

  2. 通过API调用这些云端模型可能会带来数据隐私风险,因为必须将数据发送给模型提供商。

  3. 大多数闭源模型具有大量参数(例如基于GPT-3.5则有175B个参数),导致显著的推理开销,通常反映在调用API的花销上

综上所述,研究者推出了专为SQL生成而设计的开源语言模型CodeS。其特点是体量小,与ChatGPT和GPT-4比小10-100倍,而性能上却可以比肩SOTA。

知识补充:SOTA是“State of the Art”的缩写,这个术语通常用于描述某个领域或技术中当前最先进的成果或最高水平的性能。

基座模型StarCoder

StarCoder 和 StarCoderBase 是针对代码的大语言模型 (代码 LLM),模型基于 GitHub 上的许可数据训练而得,训练数据中包括 80 多种编程语言、Git 提交、GitHub 问题和 Jupyter notebook。与 LLaMA 类似,基于 1 万亿个词元训练了一个约15B参数的模型。此外还针对一个35B词元的Python 数据集对 StarCoderBase 模型进行了微调,从而获得了一个称之为 StarCoder 的新模型。当然这个系列有1B/3B/7B/15B四种规模的基座模型。

CodeS结构拆解

首先A阶段为了提高现有语言模型的SQL生成和自然语言理解能力,研究人员采集了新语料库,该语料库由来自不同来源的11GB SQL相关数据、6GB NL-to-code(自然语言转代码)数据和4.5 GB NL相关数据集组成。基于StarCoder,采用该语料库进行增量预训练,并获得预训练的语言模型CodeS(StarCoder按照上文而言拥有1B、3B、7B和15B 4种规模)。

紧接着来到了B阶段,研究人员提出一种全面的数据库提示构建方法来生成高质量的数据库提示。该策略主要包含模式过滤器和值检索器。模式过滤器是根据给定的问题消除不相关的表和列。值检索器经过定制可以提取与问题相符的潜在有用的数据库值。 除了表名和列名之外,还合并了各种元数据,包括数据类型、注释、代表性列值以及主键和外键的信息。 如此为文本到SQL的转化提供更加真实而且丰富的上下文。

这个时候来到了C阶段,毕竟不同的客户拥有不同的业务数据库,但是又无法提供足够多的适配样本。因此研究人员提出了一种双向数据增强方法,为新应用场景自动化的生成大量新语料(提问和对应的SQL语句)。 那么如何操作呢?在文本-SQL方向的语料方面,从现实的业务场景入手需要人工标记一些数据项,再交由GPT-3.5模拟生成进行语料库扩展。而在SQL-文本方向的语料方面则需要研究人员从现有的文本-SQL的基准中提炼模板,然后用新的业务数据库填充模板,然后使用 GPT-3.5 来自动的精炼语料。 这种双向策略创建了最小人力标注投入,但是能够构建一个强大和好用的训练集。

若有着丰富的训练数据,CodeS出现的D阶段就可以执行,利用SFT进行模型训练(后续会解释,这里可以理解为对于大模型的部分参数进行微调)。

相反,若训练数据有限,那么只能使用不改变模型参数的In-Context学习(阶段E),只能提供一些文本到sql的演示,在不微调模型的情况下利用大模型的学习和模仿能力快速给出答案。

在这两种模式种,Incremental pre-traning(阶段A)和Database prompt construction(阶段B)都是其基石,而在SFT策略模式中还需要Bi-directional augmentation for new domain adaptation(阶段C)的辅助。下篇文章将开启具体组件的详细解读。

这篇关于小白也会SQL:大模型改变交互方式(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994616

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验