本文主要是介绍PyTorch之list、ndarray、tensor数据类型相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
温故而知新,可以为师矣!
一、参考资料
python中list、numpy、torch.tensor之间的相互转换
二、常用操作
list 转 numpy
ndarray = np.array(list)
import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>
list 转 torch.Tensor
如何将装有tensor的多维list转化为torch.Tensor类型
普通 list 转 torch.Tensor
tensor=torch.Tensor(list)
# 普通list转tensor
a_list = [[j for j in range(5)] for i in range(3)]
A_tensor = torch.Tensor(a_list)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')
注意:将list中元素类型为int,转换为tensor后,类型转换为float,如果希望转换为int,则需要加上类型。
A_tensor = torch.Tensor(a_list) # 默认为float
A_tensor = torch.IntTensor(a_list) # 转为int
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>
list包含多维tensor
# list包含tensor,使用torch.Tensor会报错
a = torch.rand((2, 3))
a_list = [a for _ in range(3)]
A_tensor = torch.Tensor(a_list)
输出结果
raceback (most recent call last):File "/PATH/TO/demo.py", line 13, in <module>A = torch.Tensor(a_list)
ValueError: only one element tensors can be converted to Python scalars
解决办法
如果该方法无法解决该问题,请参考下文的FAQ。
# 在cpu上
A_tensor= torch.tensor([item.detach().numpy() for item in a_list])# 在gpu上
A_tensor= torch.tensor([item.cpu().detach().numpy() for item in a_list]).cuda()
注意:因为 gpu上的 tensor 不能直接转为 numpy,需要先在 cpu 上完成操作,再回到 gpu 上。
numpy 转 list
list = ndarray.tolist()
import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list) # ndarray 转为 ndarray
A_list = a_ndarray.tolist() # ndarray 转为 listprint(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')
print(f'A_list = {A_list}, type of A_list: {type(A_list)}')
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>
A_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of A_list: <class 'list'>
numpy 转 torch.Tensor
tensor = torch.from_numpy(ndarray)
import torch
import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list)
a_tensor = torch.from_numpy(a_ndarray)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')
print(f'a_tensor = {a_tensor}, type of a_tensor: {type(a_tensor)}')
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>
a_tensor = tensor([[0, 1, 2, 3, 4],[0, 1, 2, 3, 4],[0, 1, 2, 3, 4]]), type of a_tensor: <class 'torch.Tensor'>
torch.Tensor 转 numpy
# CPU
ndarray = tensor.numpy()# GPU
ndarray = tensor.cpu().numpy()
注意:gpu上的tensor不能直接转为numpy,须要先在 cpu 上完成操做,再回到 gpu 上。
import torcha_list = [[j for j in range(5)] for i in range(3)]
# list转tensor
A_tensor = torch.Tensor(a_list)# CPU
A_ndarray = A_tensor.numpy()print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')
print(f'A_ndarray = {A_ndarray}, type of A_ndarray: {type(A_ndarray)}')
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>
A_ndarray = [[0. 1. 2. 3. 4.][0. 1. 2. 3. 4.][0. 1. 2. 3. 4.]], type of A_ndarray: <class 'numpy.ndarray'>
torch.Tensor 转 list
tensor先转numpy,后转list。
list = tensor.numpy().tolist()
import torcha_list = [[j for j in range(5)] for i in range(3)]
# list转tensor
A_tensor = torch.Tensor(a_list)
# tensor先转numpy,再转list
A_list = A_tensor.numpy().tolist()print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')
print(f'A_list = {A_list}, type of A_list: {type(A_list)}')
输出结果
a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>
A_list = [[0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0]], type of A_list: <class 'list'>
三、FAQ
Q:ValueError: only one element tensors can be converted to Python scalars
Pytorch: list, numpy. Tensor 格式转化 (附 only one element tensors can be converted to Python scalars 解决)
ValueError:only one element tensors can be converted to Python scalars解决办法
错误原因:list包含多维tensor,导致类型转换错误。有以下两种解决方法。
方法一:torch.stack
通过torch.stack将包含tensor的多维list转换成tensor。
torch.stack
要求两个输入的shape完全相同。
b_tensor = torch.rand((2, 3))
b_list = [b_tensor for _ in range(3)]
B_tensor = torch.stack(b_list)print(f'b_tensor = {b_tensor}, type of b: {type(b_tensor)}')
print(f'b_list = {b_list}, type of b_list: {type(b_list)}')
print(f'B_tensor = {B_tensor}, type of B_tensor: {type(B_tensor)}, shape of B_tensor: {B_tensor.shape}')
b_tensor = tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), type of b: <class 'torch.Tensor'>
b_list = [tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]])], type of b_list: <class 'list'>
B_tensor = tensor([[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]],[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]],[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]]), type of B_tensor: <class 'torch.Tensor'>, shape of B_tensor: torch.Size([3, 2, 3])
方法二:torch.cat
通过torch.cat将包含tensor的多维list转换成tensor。
b_tensor = torch.rand((2, 3))
b_list = [b_tensor for _ in range(3)]
B_tensor = torch.cat(b_list, 0)print(f'b_tensor = {b_tensor}, type of b: {type(b_tensor)}')
print(f'b_list = {b_list}, type of b_list: {type(b_list)}')
print(f'B_tensor = {B_tensor}, type of B_tensor: {type(B_tensor)}, shape of B_tensor: {B_tensor.shape}')
b_tensor = tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), type of b: <class 'torch.Tensor'>
b_list = [tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]])], type of b_list: <class 'list'>
B_tensor = tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780],[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780],[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), type of B_tensor: <class 'torch.Tensor'>, shape of B_tensor: torch.Size([6, 3])
这篇关于PyTorch之list、ndarray、tensor数据类型相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!