【传知代码】VRT: 关于视频修复的模型(论文复现)

2024-05-15 23:52

本文主要是介绍【传知代码】VRT: 关于视频修复的模型(论文复现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:随着数字媒体技术的普及,制作和传播视频内容变得日益普遍。但是,视频中由于多种因素,例如传输、存储和录制设备等,经常出现质量上的问题,如图像模糊、噪声干扰和低清晰度等。这类问题对用户的体验和观看体验产生了直接的负面影响,因此,视频修复技术显得尤为关键。  其重要性不容忽视。

本文所涉及所有资源均在传知代码平台可获取

概述

        视频修复技术(Video Restoration Techniques,VRT)是一种利用计算机视觉和图像处理技术来改善、修复和恢复视频内容的方法。其主要目的是消除视频中存在的噪声、模糊、失真、抖动等问题,使视频内容更清晰、更稳定,并且提高其视觉质量和观感。其实现的作用是:

1)噪声去除:使用去噪算法来消除视频中的各种类型的噪声,例如高斯噪声、椒盐噪声等,以提高图像质量和清晰度。

2)运动补偿:通过分析视频中的运动信息,利用运动估计和补偿技术来减少视频中的运动模糊,使图像更加清晰和稳定。

3)图像恢复:使用插值、补洞和修复算法来修复视频中存在的缺失、损坏或者破坏的图像部分,以恢复视频的完整性和连贯性。

4)超分辨率重建:利用超分辨率重建技术来增加视频的空间分辨率,从而提高图像的清晰度和细节展现能力。

视频修复与单一图像修复的区别在于:前者主要关注从单一图像中恢复丢失或损坏的信息,而后者则涉及对整个视频序列的处理。在进行视频修复时,需要充分考虑帧与帧之间的时间序列关系,这样可以更有效地利用时间信息来进行修复工作。这样的时序关联可能包括相邻帧间的动态运动、变动等相关信息。

关于时间信息的价值:视频里的这些时间数据在理解和修复过程中起到了不可或缺的作用。视频修复过程中,相邻帧的相互联系、动态的变动以及视频序列的动态变化等因素都为其提供了丰富的背景信息。传统的单一图像修复技术不能充分利用这些时间序列信息,而视频修复则专注于通过综合多帧信息来提升修复的效果。

在处理多帧视频时,我们面临了一系列新的挑战,包括多帧之间的对齐、在动态环境中信息的变动以及长时间序列的依赖性等问题。

为了实现更为精确和稳健的视频修复,我们需要构建一个能够最大化利用这些信息的机制。

VRT模型的详细说明

VRT 模型是指视频修复技术(Video Restoration Techniques)的模型,它是一种利用深度学习和计算机视觉技术来改善、修复和恢复视频内容的模型。这些模型通常基于深度神经网络,能够学习视频中的复杂模式和结构,并自动进行修复和增强。其整体框架如下:

Figure 1.绿色圆圈:低质量(LQ)的输入帧;蓝色圆圈:高质量(HQ)的输出帧。t-1,t及t+1为帧序号;虚线是用来描述不同帧融合的。

VRT的总体结构:Video Restoration Transformer(VRT)是一个致力于视频修复任务的深度学习模型。其整体框架由多个尺度组成,每个尺度包含两个关键模块:Temporal Mutual Self Attention(TMSA)和Parallel Warping。VRT的目的是通过并行帧预测与长时序依赖建模的方法来充分利用多帧视频信息实现高效修复。 

VRT具有多尺度结构,各尺度内含有TMSA与Parallel Warping两模块。该设计使模型能够运行于不同分辨率特征,从而较好地拟合视频序列的细节及动态变化情况。

TMSA模块:Temporal Mutual Self Attention负责把视频序列划分成细小的片段,并将相互注意力应用到这些片段中,进行联合运动估计,特征对齐以及特征融合等。同时利用自注意力机制对特征进行提取。该设计使模型可以联合处理多帧信息,较好地解决了长时序依赖建模问题。

Parallel Warping模块:Parallel Warping模块用于通过并行特征变形从相邻帧中进一步融合信息。它利用平行特征变形有效地将相邻帧信息融合到当前帧中。该步骤与特征的引导变形相似,进一步提升了该模型多帧时序信息使用效率。

下图展示了提出的Video Restoration Transformer(VRT)的框架。给定T个低质量输入帧,VRT并行地重建T个高质量帧。它通过多尺度共同提取特征、处理对齐问题,并在不同尺度上融合时间信息。在每个尺度上,VRT具有两种模块:时间互相自注意力和平行变形。为了清晰起见,图中省略了不同尺度之间的下采样和上采样操作。

实验结果表现

VRT在不同视频修复任务上的表现,如下图所示:

不同任务表现 VRT在视频超分辨率、视频去模糊、视频去噪、视频帧插值和时空视频超分辨率等五个任务上都进行了实验。通过对比实验结果,VRT展现了在各项任务中的优越性能,提供了高质量的修复效果。

性能对比 VRT与其他当前主流的视频修复模型进行了性能对比,涵盖了14个基准数据集。实验结果显示,VRT在各个数据集上都明显优于其他模型,表现出色。尤其在某些数据集上,VRT的性能提升高达2.16dB,凸显了其在视频修复领域的卓越性能。

视频修复技术(VRT)的优势和创新点主要体现在以下几个方面:

1. 深度学习驱动的修复模型:VRT采用深度学习技术,如卷积神经网络(CNN)和生成对抗网络(GAN),能够自动学习视频中的复杂模式和结构。相较于传统的基于规则的方法,深度学习模型在处理视频修复任务上表现出更高的灵活性和效果。

2. 端到端的修复过程:VRT模型通常采用端到端的修复过程,即直接从损坏或低质量的视频帧到修复后的视频帧,无需手动干预或多个步骤的流程。这种端到端的方式简化了修复流程,提高了效率。

3. 多种修复技术的综合应用:VRT模型综合运用了多种修复技术,如噪声去除、运动补偿、图像恢复等,能够在多个方面改善视频质量。通过这种综合应用,VRT能够更全面地处理视频中的问题,提供更优质的修复结果。

4. 大规模训练数据的利用:VRT模型通常使用大规模的真实视频数据进行训练,这些数据涵盖了各种不同来源和类型的视频,包括电影、电视节目、监控视频等。通过利用这些数据,VRT模型能够学习到更广泛、更真实的修复模式,提升了修复效果的准确性和鲁棒性。

5. 实时性能和效果的提升:随着硬件和算法的不断进步,现代VRT模型在实时性能和修复效果方面都取得了显著的提升。一些优化的算法和硬件加速技术使得VRT能够在更短的时间内完成修复任务,并且在视觉上提供更加真实和清晰的修复结果。

总的来说,视频修复技术(VRT)利用深度学习等先进技术,结合多种修复技术,综合应用大规模训练数据,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了巨大的优势和创新点。 VRT在不同任务上的性能提升如下图所示:

核心代码实现

这里给出视频恢复(Video Restoration)模型的测试脚本,用于在测试集上评估模型的性能:

导入依赖库和模块

import argparse
import cv2
import glob
import os
import torch
import requests
import numpy as np
from os import path as osp
from collections import OrderedDict
from torch.utils.data import DataLoaderfrom models.network_vrt import VRT as net
from utils import utils_image as util
from data.dataset_video_test import VideoRecurrentTestDataset, VideoTestVimeo90KDataset, \SingleVideoRecurrentTestDataset, VFI_DAVIS, VFI_UCF101, VFI_Vid4

定义主函数 main()

def main():parser = argparse.ArgumentParser()# ...(解析命令行参数的设置)args = parser.parse_args()# 定义设备(使用GPU或CPU)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 准备模型model = prepare_model_dataset(args)model.eval()model = model.to(device)# ...(根据数据集类型准备测试集)# 定义保存结果的目录save_dir = f'results/{args.task}'if args.save_result:os.makedirs(save_dir, exist_ok=True)test_results = OrderedDict()# ...(初始化用于保存评估结果的数据结构)# 遍历测试集进行测试for idx, batch in enumerate(test_loader):# ...(加载测试数据)with torch.no_grad():output = test_video(lq, model, args)# ...(处理模型输出,保存结果,计算评估指标)# 输出最终评估结果# ...

准备模型和数据集的函数 prepare_model_dataset(args)

def prepare_model_dataset(args):# ...(根据任务类型选择合适的模型和数据集)return model

测试视频的函数和视频片段的函数

def test_video(lq, model, args):# ...(根据需求测试整个视频或分割成多个片段进行测试)return output
def test_clip(lq, model, args):# ...(根据需求测试整个片段或分割成多个子区域进行测试)return output

写在最后

VRT通过深度学习驱动的修复模型、端到端的修复过程、多种修复技术的综合应用、大规模训练数据的利用以及实时性能和效果的提升,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了重大的优势和创新点。

通过对VRT的全面介绍和深入解析,我们不难发现它在视频修复领域的卓越贡献。VRT通过并行帧预测、长时序依赖建模和多尺度设计等关键创新点,显著提升了视频修复的性能。其在多个任务上的卓越表现以及在实际应用中的广泛潜力,使得VRT成为视频修复领域的前沿技术。
鼓励更多研究者深入挖掘视频修复领域的技术挑战,并通过VRT的经验为该领域的未来发展做出更多贡献。不仅如此,VRT的创新性和通用性也为深度学习在其他领域的研究提供了有益的参考,推动了整个人工智能领域的发展。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

【传知科技】关注有礼     公众号、抖音号、视频号

这篇关于【传知代码】VRT: 关于视频修复的模型(论文复现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993275

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

公共筛选组件(二次封装antd)支持代码提示

如果项目是基于antd组件库为基础搭建,可使用此公共筛选组件 使用到的库 npm i antdnpm i lodash-esnpm i @types/lodash-es -D /components/CommonSearch index.tsx import React from 'react';import { Button, Card, Form } from 'antd'

17.用300行代码手写初体验Spring V1.0版本

1.1.课程目标 1、了解看源码最有效的方式,先猜测后验证,不要一开始就去调试代码。 2、浓缩就是精华,用 300行最简洁的代码 提炼Spring的基本设计思想。 3、掌握Spring框架的基本脉络。 1.2.内容定位 1、 具有1年以上的SpringMVC使用经验。 2、 希望深入了解Spring源码的人群,对 Spring有一个整体的宏观感受。 3、 全程手写实现SpringM

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

记录AS混淆代码模板

开启混淆得先在build.gradle文件中把 minifyEnabled false改成true,以及shrinkResources true//去除无用的resource文件 这些是写在proguard-rules.pro文件内的 指定代码的压缩级别 -optimizationpasses 5 包明不混合大小写 -dontusemixedcaseclassnames 不去忽略非公共

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

麻了!一觉醒来,代码全挂了。。

作为⼀名程序员,相信大家平时都有代码托管的需求。 相信有不少同学或者团队都习惯把自己的代码托管到GitHub平台上。 但是GitHub大家知道,经常在访问速度这方面并不是很快,有时候因为网络问题甚至根本连网站都打不开了,所以导致使用体验并不友好。 经常一觉醒来,居然发现我竟然看不到我自己上传的代码了。。 那在国内,除了GitHub,另外还有一个比较常用的Gitee平台也可以用于