爬虫+可视化「奔跑吧」全系列嘉宾名单

2024-05-15 12:08

本文主要是介绍爬虫+可视化「奔跑吧」全系列嘉宾名单,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是「进击的Coder」的第 405 篇技术分享

作者:李运辰

来源:Python研究者

今天给大家带来『奔跑吧』全系列的嘉宾名单爬取和可视化的实现,分析每位嘉宾参加次数(可能有的嘉宾参加过几季),以及统计嘉宾职业类型个数,最后进行可视化展示分析。

1

网页分析

通过网上查询,知道『奔跑吧』到目前为止一共9季,先是奔跑吧兄弟1~4,到后面改名为奔跑吧1~4,以及奔跑吧黄河篇。

对应的网页链接如下:

url_list=['https://baike.baidu.com/item/奔跑吧兄弟第一季#4_2','https://baike.baidu.com/item/奔跑吧兄弟第二季/16414779','https://baike.baidu.com/item/奔跑吧兄弟第三季','https://baike.baidu.com/item/奔跑吧兄弟第四季','https://baike.baidu.com/item/奔跑吧第一季/20433390?fromtitle=奔跑吧第1季&fromid=22645259&fr=aladdin#4_2','https://baike.baidu.com/item/奔跑吧第二季/22421345?fromtitle=奔跑吧第2季&fromid=22645247&fr=aladdin#4_2','https://baike.baidu.com/item/奔跑吧第三季/23284990?fromtitle=奔跑吧第3季&fromid=23285732&fr=aladdin','https://baike.baidu.com/item/奔跑吧第四季/24701671?fromtitle=奔跑吧第4季&fromid=50003758&fr=aladdin','https://baike.baidu.com/item/奔跑吧·黄河篇/53052048'
]

1.分析网页结构

首先以奔跑吧第1季为例去分析网页结构(其他的链接网页结构一样)

咱们主要是爬取嘉宾姓名和明星类型(演员、歌手等)

本来想通过xpath解析网页方式去定位数据,但是发现定位不到,所以就采取了另外一种方式:字符串截取(其实正则re也可以,有很多种方式,只要能够解析出来即可,大家可以自由发挥)

截取前后分别是:分期嘉宾、表演嘉宾

2

获取数据

首先导入相应的库

import requests
from lxml import etree
import json
import time
import openpyxl

将9季的网页链接放到集合中url_list,同时定义name存放嘉宾名字,types是明星类型(歌手、演员等)

### 姓名
name = []
### 明星类型
types = []
url_list=['https://baike.baidu.com/item/奔跑吧兄弟第一季#4_2','https://baike.baidu.com/item/奔跑吧兄弟第二季/16414779','https://baike.baidu.com/item/奔跑吧兄弟第三季','https://baike.baidu.com/item/奔跑吧兄弟第四季','https://baike.baidu.com/item/奔跑吧第一季/20433390?fromtitle=奔跑吧第1季&fromid=22645259&fr=aladdin#4_2','https://baike.baidu.com/item/奔跑吧第二季/22421345?fromtitle=奔跑吧第2季&fromid=22645247&fr=aladdin#4_2','https://baike.baidu.com/item/奔跑吧第三季/23284990?fromtitle=奔跑吧第3季&fromid=23285732&fr=aladdin','https://baike.baidu.com/item/奔跑吧第四季/24701671?fromtitle=奔跑吧第4季&fromid=50003758&fr=aladdin','https://baike.baidu.com/item/奔跑吧·黄河篇/53052048'
]

开始请求数据

### 循环遍历
for u in url_list:url = uprint(url)res = requests.get(url,headers=headers)res.encoding = 'utf-8'text = res.textsp1 = text.split("参与期数")[1].split("表演嘉宾")[0]selector = etree.HTML(sp1)tr_list = selector.xpath('.//tr')tr_list = tr_list[1:]###名字for i in tr_list:#print(i.xpath(".//div[@class='para']/b/a/text()")[0])name.append(i.xpath(".//div[@class='para']/b/a/text()")[0])### 明星类型for i in tr_list:te = i.xpath(".//div[@class='para']/text()")[0]te = te.split(",")[0].replace("(","")#print(te)types.append(te)print(name)
print(types)
print(len(name))
print(len(types))

保存数据(excel)

outwb = openpyxl.Workbook()
outws = outwb.create_sheet(index=0)
outws.cell(row=1, column=1, value="名字")
outws.cell(row=1, column=2, value="明星类型")
for i in range(0,len(name)):outws.cell(row=i+2, column=1, value=str(name[i]))outws.cell(row=i+2, column=2, value=str(types[i]))
outwb_p.save("奔跑吧嘉宾名单-李运辰.xls")  # 保存

3

可视化分析

1.统计每一位嘉宾参加次数排名(取前15)

首先读取excel中数据,其中名字(第一列)存放在name变量中,明星类型(第二列)存放在types变量中。

data = pd.read_excel("奔跑吧嘉宾名单-李运辰.xls")
name = data['名字'].tolist()
types = data['明星类型'].tolist()

然后对name,嘉宾名字进行个数(参加过多少次)统计排名(取前15)

# 排序方法
from collections import Counter
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
name_key = [d[i][0] for i in range(0,16)]
value = [d[i][1] for i in range(0,16)]
print(name_key)
print(value)

进行可视化展示

导入相关的库

### 画图
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from pyecharts.charts import Bar
from pyecharts.charts import Pie

绘图代码

# 链式调用c = (Bar(init_opts=opts.InitOpts(  # 初始配置项theme=ThemeType.MACARONS,animation_opts=opts.AnimationOpts(animation_delay=1000, animation_easing="cubicOut"  # 初始动画延迟和缓动效果))).add_xaxis(xaxis_data=name_key)  # x轴.add_yaxis(series_name="统计每一位嘉宾参加次数排名(取前15)", y_axis=values)  # y轴.set_global_opts(title_opts=opts.TitleOpts(title='', subtitle='',  # 标题配置和调整位置title_textstyle_opts=opts.TextStyleOpts(font_family='SimHei', font_size=25, font_weight='bold', color='red',), pos_left="90%", pos_top="10",),xaxis_opts=opts.AxisOpts(name='嘉宾', axislabel_opts=opts.LabelOpts(rotate=45)),# 设置x名称和Label rotate解决标签名字过长使用yaxis_opts=opts.AxisOpts(name='次数'),).render("统计每一位嘉宾参加次数排名(取前15).html"))

从图中可以看到,参加奔跑吧节目最多的嘉宾是:林更新(3次),其他的最多的次数是两次。

2.嘉宾职业类型统计

从嘉宾(明星)类型中可以大概知道有这么几类(演员、歌手、主持人、模特、主持人、运动员、舞者、制片人、赛车手、经纪人)

开始统计以上这几种职业类型的个数

### 嘉宾职业类型name = ['演员','歌手','主持人','模特','主持人','运动员','舞者','制片人','赛车手','经纪人']### 初始化为0value = [0,0,0,0,0,0,0,0,0,0]for i in types:for j in range(0,len(name)):if name[j] in i:value[j] = value[j] +1print(name)print(value)

开始绘图

pie = Pie("嘉宾职业类型统计",title_pos='center')
pie.add("",name,value,radius=[40, 75],label_text_color=None,is_label_show=True,is_more_utils=True,legend_orient="vertical",legend_pos="left",
)
pie.render(path="嘉宾职业类型统计.html")

从统计图来看,嘉宾中职业最多的是演员,其次是歌手。

4

小结

今天分析『奔跑吧』全系列的嘉宾名单,分析每位嘉宾参加次数(可能有的嘉宾参加过几季),以及统计嘉宾职业类型个数,最后进行可视化展示分析。

End

「进击的Coder」专属学习群已正式成立,搜索「CQCcqc4」添加崔庆才的个人微信或者扫描下方二维码拉您入群交流学习。

看完记得关注@进击的Coder

及时收看更多好文

↓↓↓

点个在看你最好看

这篇关于爬虫+可视化「奔跑吧」全系列嘉宾名单的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991793

相关文章

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

Golang 网络爬虫框架gocolly/colly(五)

gcocolly+goquery可以非常好地抓取HTML页面中的数据,但碰到页面是由Javascript动态生成时,用goquery就显得捉襟见肘了。解决方法有很多种: 一,最笨拙但有效的方法是字符串处理,go语言string底层对应字节数组,复制任何长度的字符串的开销都很低廉,搜索性能比较高; 二,利用正则表达式,要提取的数据往往有明显的特征,所以正则表达式写起来比较简单,不必非常严谨; 三,使

Golang网络爬虫框架gocolly/colly(四)

爬虫靠演技,表演得越像浏览器,抓取数据越容易,这是我多年爬虫经验的感悟。回顾下个人的爬虫经历,共分三个阶段:第一阶段,09年左右开始接触爬虫,那时由于项目需要,要访问各大国际社交网站,Facebook,myspace,filcker,youtube等等,国际上叫得上名字的社交网站都爬过,大部分网站提供restful api,有些功能没有api,就只能用http抓包工具分析协议,自己爬;国内的优酷、

Golang网络爬虫框架gocolly/colly(三)

熟悉了《Golang 网络爬虫框架gocolly/colly 一》和《Golang 网络爬虫框架gocolly/colly 二》之后就可以在网络上爬取大部分数据了。本文接下来将爬取中证指数有限公司提供的行业市盈率。(http://www.csindex.com.cn/zh-CN/downloads/industry-price-earnings-ratio) 定义数据结构体: type Zhj

014.Python爬虫系列_解析练习

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数据库教程:👉👉 Oracle数据库文章合集 👈👈 优

基于SSM+Vue+MySQL的可视化高校公寓管理系统

系统展示 管理员界面 宿管界面 学生界面 系统背景   当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前,不接受信息改革带来的信息技术的企业随时面临被淘汰,被取代的风险。所以当今,各个行业领域,不管是传统的教育行业

urllib与requests爬虫简介

urllib与requests爬虫简介 – 潘登同学的爬虫笔记 文章目录 urllib与requests爬虫简介 -- 潘登同学的爬虫笔记第一个爬虫程序 urllib的基本使用Request对象的使用urllib发送get请求实战-喜马拉雅网站 urllib发送post请求 动态页面获取数据请求 SSL证书验证伪装自己的爬虫-请求头 urllib的底层原理伪装自己的爬虫-设置代理爬虫coo

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法: 1. 使用Matplotlib Pandas中的plot()方法实际上是基于Matplotlib的,你可以使用它来绘制各种基本图表,例如折线图、柱状图、散点图等。 import pandas