本文主要是介绍8个 可以让 Python 加速的 tips,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
这是「进击的Coder」的第 503 篇技术分享
作者:知乎-张皓
来源:https://zhuanlan.zhihu.com/p/143052860
“
阅读本文大概需要 15 分钟。
”Python 是一种脚本语言,相比 C/C++ 这样的编译语言,在效率和性能方面存在一些不足。但是,有很多时候,Python 的效率并没有想象中的那么夸张。本文对一些 Python 代码加速运行的技巧进行整理。
0. 代码优化原则
本文会介绍不少的 Python 代码加速运行的技巧。在深入代码优化细节之前,需要了解一些代码优化基本原则。
第一个基本原则是不要过早优化。很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”。因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。
第二个基本原则是权衡优化的代价。优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。
第三个原则是不要优化那些无关紧要的部分。如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。
1. 避免全局变量
# 不推荐写法。代码耗时:26.8秒
import mathsize = 10000
for x in range(size):for y in range(size):z = math.sqrt(x) + math.sqrt(y)
许多程序员刚开始会用 Python 语言写一些简单的脚本,当编写脚本时,通常习惯了直接将其写为全局变量,例如上面的代码。但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。
# 推荐写法。代码耗时:20.6秒
import mathdef main(): # 定义到函数中,以减少全部变量使用size = 10000for x in range(size):for y in range(size):z = math.sqrt(x) + math.sqrt(y)main()
2. 避免.
2.1 避免模块和函数属性访问
# 不推荐写法。代码耗时:14.5秒
import mathdef computeSqrt(size: int):result = []for i in range(size):result.append(math.sqrt(i))return resultdef main():size = 10000for _ in range(size):result = computeSqrt(size)main()
每次使用.
(属性访问操作符时)会触发特定的方法,如__getattribute__()
和__getattr__()
,这些方法会进行字典操作,因此会带来额外的时间开销。通过from import
语句,可以消除属性访问。
# 第一次优化写法。代码耗时:10.9秒
from math import sqrtdef computeSqrt(size: int):result = []for i in range(size):result.append(sqrt(i)) # 避免math.sqrt的使用return resultdef main():size = 10000for _ in range(size):result = computeSqrt(size)main()
在第 1 节中我们讲到,局部变量的查找会比全局变量更快,因此对于频繁访问的变量sqrt
,通过将其改为局部变量可以加速运行。
# 第二次优化写法。代码耗时:9.9秒
import mathdef computeSqrt(size: int):result = []sqrt = math.sqrt # 赋值给局部变量for i in range(size):result.append(sqrt(i)) # 避免math.sqrt的使用return resultdef main():size = 10000for _ in range(size):result = computeSqrt(size)main()
除了math.sqrt
外,computeSqrt
函数中还有.
的存在,那就是调用list
的append
方法。通过将该方法赋值给一个局部变量,可以彻底消除computeSqrt
函数中for
循环内部的.
使用。
# 推荐写法。代码耗时:7.9秒
import mathdef computeSqrt(size: int):result = []append = result.appendsqrt = math.sqrt # 赋值给局部变量for i in range(size):append(sqrt(i)) # 避免 result.append 和 math.sqrt 的使用return resultdef main():size = 10000for _ in range(size):result = computeSqrt(size)main()
2.2 避免类内属性访问
# 不推荐写法。代码耗时:10.4秒
import math
from typing import Listclass DemoClass:def __init__(self, value: int):self._value = valuedef computeSqrt(self, size: int) -> List[float]:result = []append = result.appendsqrt = math.sqrtfor _ in range(size):append(sqrt(self._value))return resultdef main():size = 10000for _ in range(size):demo_instance = DemoClass(size)result = demo_instance.computeSqrt(size)main()
避免.
的原则也适用于类内属性,访问self._value
的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。
# 推荐写法。代码耗时:8.0秒
import math
from typing import Listclass DemoClass:def __init__(self, value: int):self._value = valuedef computeSqrt(self, size: int) -> List[float]:result = []append = result.appendsqrt = math.sqrtvalue = self._valuefor _ in range(size):append(sqrt(value)) # 避免 self._value 的使用return resultdef main():size = 10000for _ in range(size):demo_instance = DemoClass(size)demo_instance.computeSqrt(size)main()
3. 避免不必要的抽象
# 不推荐写法,代码耗时:0.55秒
class DemoClass:def __init__(self, value: int):self.value = value@propertydef value(self) -> int:return self._value@value.setterdef value(self, x: int):self._value = xdef main():size = 1000000for i in range(size):demo_instance = DemoClass(size)value = demo_instance.valuedemo_instance.value = imain()
任何时候当你使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用getter/setter
函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。
# 推荐写法,代码耗时:0.33秒
class DemoClass:def __init__(self, value: int):self.value = value # 避免不必要的属性访问器def main():size = 1000000for i in range(size):demo_instance = DemoClass(size)value = demo_instance.valuedemo_instance.value = imain()
4. 避免数据复制
4.1 避免无意义的数据复制
# 不推荐写法,代码耗时:6.5秒
def main():size = 10000for _ in range(size):value = range(size)value_list = [x for x in value]square_list = [x * x for x in value_list]main()
上面的代码中value_list
完全没有必要,这会创建不必要的数据结构或复制。
# 推荐写法,代码耗时:4.8秒
def main():size = 10000for _ in range(size):value = range(size)square_list = [x * x for x in value] # 避免无意义的复制main()
另外一种情况是对 Python 的数据共享机制过于偏执,并没有很好地理解或信任 Python 的内存模型,滥用 copy.deepcopy()
之类的函数。通常在这些代码中是可以去掉复制操作的。
4.2 交换值时不使用中间变量
不推荐写法,代码耗时:0.07秒
# 不推荐写法,代码耗时:0.07秒
def main():size = 1000000for _ in range(size):a = 3b = 5temp = aa = bb = tempmain()
上面的代码在交换值时创建了一个临时变量temp
,如果不借助中间变量,代码更为简洁、且运行速度更快。
# 推荐写法,代码耗时:0.06秒
def main():size = 1000000for _ in range(size):a = 3b = 5a, b = b, a # 不借助中间变量main()
4.3 字符串拼接用join
而不是+
# 不推荐写法,代码耗时:2.6秒
import string
from typing import Listdef concatString(string_list: List[str]) -> str:result = ''for str_i in string_list:result += str_ireturn resultdef main():string_list = list(string.ascii_letters * 100)for _ in range(10000):result = concatString(string_list)main()
当使用a + b
拼接字符串时,由于 Python 中字符串是不可变对象,其会申请一块内存空间,将a
和b
分别复制到该新申请的内存空间中。因此,如果要拼接 n
个字符串,会产生 n-1
个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用join()
拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。
# 推荐写法,代码耗时:0.3秒
import string
from typing import Listdef concatString(string_list: List[str]) -> str:return ''.join(string_list) # 使用 join 而不是 +def main():string_list = list(string.ascii_letters * 100)for _ in range(10000):result = concatString(string_list)main()
5. 利用if
条件的短路特性
# 不推荐写法,代码耗时:0.05秒
from typing import Listdef concatString(string_list: List[str]) -> str:abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}abbr_count = 0result = ''for str_i in string_list:if str_i in abbreviations:result += str_ireturn resultdef main():for _ in range(10000):string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']result = concatString(string_list)main()
if
条件的短路特性是指对if a and b
这样的语句, 当a
为False
时将直接返回,不再计算b
;对于if a or b
这样的语句,当a
为True
时将直接返回,不再计算b
。因此, 为了节约运行时间,对于or
语句,应该将值为True
可能性比较高的变量写在or
前,而and
应该推后。
# 推荐写法,代码耗时:0.03秒
from typing import Listdef concatString(string_list: List[str]) -> str:abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}abbr_count = 0result = ''for str_i in string_list:if str_i[-1] == '.' and str_i in abbreviations: # 利用 if 条件的短路特性result += str_ireturn resultdef main():for _ in range(10000):string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']result = concatString(string_list)main()
6. 循环优化
6.1 用for
循环代替while
循环
# 不推荐写法。代码耗时:6.7秒
def computeSum(size: int) -> int:sum_ = 0i = 0while i < size:sum_ += ii += 1return sum_def main():size = 10000for _ in range(size):sum_ = computeSum(size)main()
Python 的for
循环比while
循环快不少。
# 推荐写法。代码耗时:4.3秒
def computeSum(size: int) -> int:sum_ = 0for i in range(size): # for 循环代替 while 循环sum_ += ireturn sum_def main():size = 10000for _ in range(size):sum_ = computeSum(size)main()
6.2 使用隐式for
循环代替显式for
循环
针对上面的例子,更进一步可以用隐式for
循环来替代显式for
循环
# 推荐写法。代码耗时:1.7秒
def computeSum(size: int) -> int:return sum(range(size)) # 隐式 for 循环代替显式 for 循环def main():size = 10000for _ in range(size):sum = computeSum(size)main()
6.3 减少内层for
循环的计算
# 不推荐写法。代码耗时:12.8秒
import mathdef main():size = 10000sqrt = math.sqrtfor x in range(size):for y in range(size):z = sqrt(x) + sqrt(y)main()
上面的代码中sqrt(x)
位于内侧for
循环, 每次训练过程中都会重新计算一次,增加了时间开销。
# 推荐写法。代码耗时:7.0秒
import mathdef main():size = 10000sqrt = math.sqrtfor x in range(size):sqrt_x = sqrt(x) # 减少内层 for 循环的计算for y in range(size):z = sqrt_x + sqrt(y)main()
7. 使用numba.jit
我们沿用上面介绍过的例子,在此基础上使用numba.jit
。numba
可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。关于numba
的更多信息见下面的主页:
http://numba.pydata.org/numba.pydata.org/
# 推荐写法。代码耗时:0.62秒
import numba@numba.jit
def computeSum(size: float) -> int:sum = 0for i in range(size):sum += ireturn sumdef main():size = 10000for _ in range(size):sum = computeSum(size)main()
8. 选择合适的数据结构
Python 内置的数据结构如str
, tuple
, list
, set
, dict
底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。
list
类似于 C++ 中的std::vector
,是一种动态数组。其会预分配一定内存空间,当预分配的内存空间用完,又继续向其中添加元素时,会申请一块更大的内存空间,然后将原有的所有元素都复制过去,之后销毁之前的内存空间,再插入新元素。删除元素时操作类似,当已使用内存空间比预分配内存空间的一半还少时,会另外申请一块小内存,做一次元素复制,之后销毁原有大内存空间。因此,如果有频繁的新增、删除操作,新增、删除的元素数量又很多时,list的效率不高。此时,应该考虑使用collections.deque
。collections.deque
是双端队列,同时具备栈和队列的特性,能够在两端进行 O(1)
复杂度的插入和删除操作。
list
的查找操作也非常耗时。当需要在list
频繁查找某些元素,或频繁有序访问这些元素时,可以使用bisect
维护list
对象有序并在其中进行二分查找,提升查找的效率。
另外一个常见需求是查找极小值或极大值,此时可以使用heapq
模块将list
转化为一个堆,使得获取最小值的时间复杂度是 O(1)
。
下面的网页给出了常用的 Python 数据结构的各项操作的时间复杂度:
TimeComplexity - Python Wikiwiki.python.org/moin/TimeComplexity
参考资料
David Beazley & Brian K. Jones. Python Cookbook, Third edition. O'Reilly Media, ISBN: 9781449340377, 2013.
张颖 & 赖勇浩. 编写高质量代码:改善Python程序的91个建议. 机械工业出版社, ISBN: 9787111467045, 2014.
End
「进击的Coder」专属学习群已正式成立,搜索「CQCcqc4」添加崔庆才的个人微信或者扫描下方二维码拉您入群交流学习。
看完记得关注@进击的Coder
及时收看更多好文
↓↓↓
崔庆才的「进击的Coder」知识星球已正式成立,感兴趣的可以查看《我创办了一个知识星球》了解更多内容,欢迎您的加入:
点个在看你最好看
这篇关于8个 可以让 Python 加速的 tips的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!