Python图嵌入信息潜在表征算法

2024-05-15 09:28

本文主要是介绍Python图嵌入信息潜在表征算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python社群纽带关系谱和图神经 | 📜C++和Python通信引文道路社评电商大规模行为图结构数据模型 | 📜角色图嵌入学习 | 📜图全局结构信息学习 | 📜图编码解码半监督学习 | 📜富文本表征学习 | 📜法律文本内容语义学习

✒️Python提取图节点嵌入信息

图可以定义为 G = (V, E),其中 V 是一组节点,E 是一组边。 边是两个节点之间的连接,例如节点A和D有一条边。 另外,重要的是要注意图可以是有向图或无向图。 例如,下面的图是无向的,因为 A 与 D 连接,D 与 A 连接。还有一件事,图可以获取不同的节点属性以及边属性,但就我们的目的而言,今天并不重要。

B
A
D
C
E

现在我们或多或少知道了图是什么,我们可以尝试从图中提取节点嵌入。

假设您需要解决如下场景:

  • 我们在社交网络中进行用户交互,我们需要预测两个用户何时连接。节点代表用户,边代表两个用户是“朋友”。 (链接预测任务)
  • 我们有一个研究出版物的引用网络,我们需要预测每个出版物的主题。节点代表出版物,边代表从一份出版物到另一份出版物的引用。 (节点预测任务)
  • 我们有一组蛋白质,可分为酶或非酶。节点代表氨基酸,如果两个节点相距小于 6 埃,则通过边连接它们。 (图分类任务)

对于所有提到的任务,我们需要有节点的表示。因此,如果我们需要运行机器学习算法,我们需要将图结构转换为向量空间。

💦 算法一:

随机游走是一种将图转换为节点序列以训练此模型的方法。 基本上,对于图中的每个节点,模型都会生成连接节点的随机路径。 一旦我们有了这些节点的随机路径,它就会训练此模型来获得节点嵌入。

出于学习目的,请在下面找到该算法的实现,请注意该代码尚未准备好用于大规模应用,可以进行一些并行化和内存改进。

import networkx as nx
import random
import numpy as np
from typing import List
from tqdm import tqdmclass DWk:def __init__(self, window_size: int, embedding_size: int, walk_length: int, walks_per_node: int):self.window_size = window_sizeself.embedding_size = embedding_sizeself.walk_length = walk_lengthself.walk_per_node = walks_per_nodedef random_walk(self, g: nx.Graph, start: str, use_probabilities: bool = False) -> List[str]:walk = [start]for i in range(self.walk_length):neighbours = g.neighbors(walk[i])neighs = list(neighbours)if use_probabilities:probabilities = [g.get_edge_data(walk[i], neig)["weight"] for neig in neighs]sum_probabilities = sum(probabilities)probabilities = list(map(lambda t: t / sum_probabilities, probabilities))p = np.random.choice(neighs, p=probabilities)else:p = random.choice(neighs)walk.append(p)return walkdef get_walks(self, g: nx.Graph, use_probabilities: bool = False) -> List[List[str]]:random_walks = []for _ in range(self.walk_per_node):random_nodes = list(g.nodes)random.shuffle(random_nodes)for node in tqdm(random_nodes):random_walks.append(self.random_walk(g=g, start=node, use_probabilities=use_probabilities))return random_walksdef compute_embeddings(self, walks: List[List[str]]):model = Word2Vec(sentences=walks, window=self.window_size, vector_size=self.embedding_size)return model.wv

💦算法二:

该算法使用深度优先搜索和广度优先搜索算法的组合来提取随机游走。 这种算法组合由两个参数 P(返回参数)和 Q(输入输出参数)控制。

基本上,如果 P 很大,随机游走也会很大,所以它会进行探索,如果 P 很小,我们会停留在本地。 Q 也会发生类似但相反的行为,如果 Q 很小,它将进行探索,如果 Q 很大,它将停留在本地。

我们可以使用 PyTorch 几何测试算法。 该库实现了一系列图神经网络架构和方法来加速 GNN 的工作。 为了测试它,我将使用 Pytorch 几何上提出的教程的一小部分。 为此,他们使用 Cora 数据集。 Cora 数据集包含 2708 份科学出版物,分为七类。 引文网络由 5429 个链接组成。 数据集中的每个出版物都由 0/1 值词向量描述,指示词典中相应词的不存在/存在。该词典由 1433 个独特单词组成。

from torch_geometric.nn import Node2Vec
import os.path as osp
import torch
from torch_geometric.datasets import Planetoid
from tqdm.notebook import tqdmdataset = 'Cora'
path = osp.join('.', 'data', dataset)
dataset = Planetoid(path, dataset)  # dowload or load the Cora dataset
data = dataset[0]
device = 'cuda' if torch.cuda.is_available() else 'cpu'  # check if cuda is available to send the model and tensors to the GPU
model = Node2Vec(data.edge_index, embedding_dim=128, walk_length=20,context_size=10, walks_per_node=10,num_negative_samples=1, p=1, q=1, sparse=True).to(device)def train():model.train() total_loss = 0for pos_rw, neg_rw in tqdm(loader):optimizer.zero_grad() loss = model.loss(pos_rw.to(device), neg_rw.to(device))  loss.backward()optimizer.step() total_loss += loss.item()return total_loss / len(loader)for epoch in range(1, 100):loss = train()print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')all_vectors = ""
for tensor in model(torch.arange(data.num_nodes, device=device)):s = "\t".join([str(value) for value in tensor.detach().cpu().numpy()])all_vectors += s + "\n"with open("vectors.txt", "w") as f:f.write(all_vectors)with open("labels.txt", "w") as f:f.write("\n".join([str(label) for label in data.y.numpy()]))

模型训练完成后,我们将为图中的每个节点提供一个嵌入,每个嵌入将为 128 维。 训练结束后,我们可以保存嵌入,并在嵌入投影仪中查看表示与标签相比有多“好”。 为此,我使用 T-SNE 算法将 128 维数据减少到 3 维数据,以便我们可以绘制它。

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python图嵌入信息潜在表征算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991441

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专