IBM Granite模型开源:推动软件开发领域的革新浪潮

2024-05-15 07:20

本文主要是介绍IBM Granite模型开源:推动软件开发领域的革新浪潮,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

下载: GitHub - ibm-granite/granite-code-models: Granite Code Models: A Family of Open Foundation Models for Code Intelligence

开源大型语言模型(LLMs)并非易事。就拿开源倡议组织(OSI)来说,他们已经花了近两年时间致力于开发一个与AI兼容的开源定义。一些公司——例如Meta——声称已经开源了他们的LLMs(实际上并没有)。但现在,IBM已经实际行动起来。

IBM通过使用来自公开可用数据集的预训练数据来管理Granite代码的开源,例如GitHub Code Clean、Starcoder数据、公开代码库和GitHub问题。简而言之,IBM为避免版权或法律问题付出了极大的努力。Granite Code Base模型训练在3至4TB的代码数据和自然语言代码相关数据集上。

所有这些模型都在Apache 2.0许可下获得授权,用于研究和商业用途。正是最后一个词——商业——阻止了其他主要LLMs的开源。没有其他人想要分享他们的LLM宝藏。

但正如IBM研究部首席科学家Ruchir Puri所说:“我们正在通过发布性能最高、成本最有效的代码LLMs,改变软件的生成式AI格局,使开放社区能够无限制地创新。”

或许没有限制,但这并不意味着没有特定的应用目标。

正如IBM生态系统总经理Kate Woolley去年所言,这些模型并不是“试图成为面向所有人的所有事物。这不是关于为你的狗写诗。这是关于可以调整的、非常针对我们希望企业使用的商业用例的精选模型。具体来说,它们用于编程。”

这些仅限解码器的模型,训练覆盖了116种编程语言的代码,从30亿到340亿参数不等。它们支持许多开发者用途,从复杂的应用现代化到内存受限的设备上的任务。

IBM已经在其IBM Watsonx代码助手(WCA)产品中内部使用了这些LLMs,例如用于IT自动化的WCA for Ansible Lightspeed和用于现代化COBOL应用程序的WCA for IBM Z。虽然并非每个人都负担得起Watsonx,但现在任何人都可以使用IBM和Red Hat的InstructLab来操作Granite LLMs。

正如Red Hat的高级副总裁兼首席产品官Ashesh Badani所说,InstructLab将“降低面向混合云的GenAI的许多障碍,从有限的数据科学技能到所需的庞大资源。”其目的是降低希望使用LLMs的开发者的入门级别。

有多低?正如Matt Hicks在Red Hat峰会上所说:“就在一年前,还需要配备高端、相当奇特的硬件的功能,现在可以在笔记本电脑上运行。曾花费数亿美元的训练技术,现在只需几千美元就能复制。”

例如,除了InstructLab,你还可以使用Ollma在本地运行LLMs。正如Bala Priya C在KDnuggets中解释的那样,“使用Ollma,运行LLM所需的一切——模型权重和所有配置——都打包在一个Modelfile中。想象一下LLMs的Docker。”这些模型可在Hugging Face、GitHub、Watsonx.ai和Red Hat企业Linux (RHEL) AI等平台上获得。

IBM预计,程序员在使用Granite LLMs编写代码的同时,将通过使用这些LLMs来创建测试、发现和修复bug,节省时间和精力。“开发

者日常工作中的许多平凡但必不可少的任务——从生成单元测试到编写文档或进行漏洞测试——都可以通过这些模型自动化。”

此外,IBM认为Granite模型因其明确的许可和训练方式,以及已清洁和过滤了仇恨、滥用和粗俗语言的数据,对开发者有所帮助的同时,也能带来商业利益。

因此,如果你的公司因法律原因犹豫不决地探索使用AI构建程序,IBM现在为你提供了改进软件开发工作所需的开源工具。尝试一下吧。你们中的一些人将会用这些Granite块建造伟大的东西。

这篇关于IBM Granite模型开源:推动软件开发领域的革新浪潮的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991171

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus